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1 Introduction

The direct detection of gravitational waves from merging binary systems notoriously marked an important

milestone in physics. Much of the success of gravitational-wave astronomy relies on perturbation theory.

Perturbative approaches are essential ingredients in the study of gravitational-wave sources in the strong-

field regime, such as the ringdown after the merger of a binary system, tidally perturbed compact objects,

and extreme mass ratio inspirals. The study of black hole perturbations has a long history, dating back to

Regge and Wheeler’s work on the odd-parity perturbations of Schwarzschild spacetime in the late 1950s,

which was followed up by several other works by Zerilli, Vishveshwara, Press, Chandrasekhar, Detweiler,

Teukolsky and others.

These notes cover a short selection of topics in the context of black hole perturbation theory, presented

at the 2024 IPhT Lectures in Saclay.1

Figure 1: The dynamics of two body systems is usually characterized by three distinct phases: the inspiral (the phase

in which the bodies are in a regime of weak gravity and small velocities), the merger and the ringdown (the final

stage when object is relaxing to its equilibrium configuration). Standard techniques rely on perturbative methods

to model the evolution of inspiral and ringdown, while numerical relativity computations are used to resolve the

nonlinear intermediate stage of the merger.

Conventions: Throughout we use the mostly-plus metric signature, and work in natural units ℏ = c = 1.

We also often set G = 1. We will often work in generic D-spacetime dimensions. We denote spacetime

indices using Greek letters, e.g., µ, ν, ρ, · · · , denote spatial indices by Latin letters from the beginning of the

alphabet, e.g., a, b, c, · · · , and we denote angular indices on the SD−2-sphere using Latin indices from the

middle of the alphabet, e.g., i, j, k, · · · . We will be using the following convention for (anti-)symmetrization

of indices: A(µν) ≡ 1
2(Aµν + Aνµ), B[µν] ≡ 1

2(Bµν − Bνµ). ( · · · )T will denote the symmetrized traceless

component of the enclosed indices.

1See https://courses.ipht.fr/?q=en/all-courses for a list of courses.
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2 A black hole perturbation theory primer

We begin by reviewing the main aspects of black hole perturbation theory in the simpler case of non-

rotating black holes. Although the main focus of the lecture notes will be on black holes in four-dimensional

general relativity, it is instructive to set up the problem in generic D-spacetime dimension. Results in four

dimensions can be obtained by simply setting D = 4 in the expressions below.2 This is useful because, as

we shall see, although the formulas below are valid in any D ≥ 4, some properties of the dynamics of the

perturbations, including duality symmetries, are exclusive of D = 4 and do not hold in D > 4. We will

comment on these particular aspects below.

In the four-dimensional context, the linearized dynamics of the perturbations around an asymptotically

flat Schwarzschild black hole was first worked out by Regge and Wheeler [1] and by Zerilli [2, 3], and in a

gauge-invariant formalism by Moncrief, Cunningham, and Price [4–6]. In higher dimensions, the equations

of motion for these perturbations can be found in [7–10]. (We will be mostly following [10] here.) For

the generalization to massive and partially massless spin-2 fields on a Schwarzschild–(A)dS spacetime in

D-dimensions, see e.g. [11].

2.1 Perturbations of Schwarzschild black holes

The Schwarzschild–(anti-)de Sitter (S(A)dS) geometry ḡµν in D spacetime dimensions is described by the

line element

ds2 = ḡµνdx
µdxν = −f(r)dt2 + 1

f(r)
dr2 + r2dΩ2

SD−2 , (2.1)

where

f(r) = 1−
(rs
r

)D−3
− 2Λr2

(D − 1)(D − 2)
, (2.2)

and where dΩ2
D−2 is the line element on the (D − 2)-sphere, defined recursively by

dΩ2
Sn = dθ2n + sin2 θndΩ

2
Sn−1 , with dΩ2

S1 = dθ21, (2.3)

where the coordinate θ1 ranges from 0 to 2π, whereas all other angles θi range from 0 to π. The parameter

Λ corresponds to the cosmological constant (the geometry corresponds to Schwarzschild–anti-de Sitter for

negative Λ, and Schwarzschild–de Sitter for positive Λ), while rs denotes the Schwarzschild radius of the

asymptotically flat black hole in the limit Λ = 0. It is related to the asymptotically flat black hole mass

via

GM =
(D − 2)

16π

(
2π

D−1
2

Γ
[
D−1
2

]) rD−3
s . (2.4)

In many cases it will be convenient to introduce the so-called tortoise radial coordinate, defined through

dr⋆ =
1

f(r)
dr. (2.5)

2Alternatively, a reader that is interested uniquely on the D = 4 case can jump directly to the box below where the original

results by Regge and Wheeler, and Zerilli are summarized.
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The S(A)dS spacetime is both static and rotationally symmetric. It possesses (D − 1)(D − 2)/2 + 1

isometries which form the group R× SO(D− 1). One of these isometries corresponds to time translations,

reflecting the time independence of the geometry, while the rest are the rotational symmetries of surfaces

of constant radius at fixed time.3

We are interested in studying perturbations around the background geometry ḡµν . Therefore, we shall

perturb ḡµν as ḡµν +hµν and study the dynamics of the fluctuation hµν in perturbation theory. In order to

maximally utilize the SO(D − 1) symmetry, it is useful to decompose fields propagating in the spacetime

into spherical harmonics. In particular, we will decompose hµν into scalar, vector, and tensor spherical

harmonics. This is convenient because rotational invariance of the background guarantees that modes

associated to different types of spherical harmonics decouple from each other at linear order. To provide

an analogy, this is reminiscent of the scalar, vector and tensor decomposition on an FLRW spacetime in

cosmology: in a similar way, homogeneity and isotropy of the FLRW background ensure that different

modes decouple at the level of the linearized equations of motion.

We shall thus split hµν as follows:

hµν =
∑
L,M

f(r)H0(t, r) H1(t, r) H0(t, r)∇i

∗ f(r)−1H2(t, r) H1(t, r)∇i

∗ ∗ r2
[
K(t, r)γij +G(t, r)∇(i∇j)T

]
YM

L

+
∑
L,M

0 0 h0(t, r)Y
(T )
i

M
L

∗ 0 h1(t, r)Y
(T )
i

M
L

∗ ∗ r2h2(t, r)∇(iY
(T )
j)

M
L

+
∑
L,M

0 0 0

∗ 0 0

∗ ∗ r2hT (t, r)

Y
(TT )
ij

M
L , (2.6)

where asterisks correspond to symmetric components, (· · · )T denotes the trace-free symmetrized part of

the enclosed indices, and ∇i denotes the covariant derivative on the Sn sphere.4 Y are the scalar spherical

harmonics, Y
(T )
i are the (transverse) vector harmonics, and Y

(TT )
ij are the (transverse and traceless) tensor

harmonics; they are orthogonal to each other and satisfy the following eigenvalue equations [10, 13]:

∆SnYL(θ) = −L(L+ n− 1)YL(θ), (2.7)

∆SnY
(T )
i

M
L = − (L(L+ n− 1)− 1)Y

(T )
i

M
L , (2.8)

∆SnY
(TT )
ij

M
L = − (L(L+ n− 1)− 2)Y

(TT )
ij

M
L , (2.9)

where n ≡ D − 2 and ∆Sn is the laplacian on the Sn sphere, which can be recursively expressed as

∆Sn = sin1−n θn
∂

∂θn
sinn−1 θn

∂

∂θn
+ sin−2 θn∆Sn−1 . (2.10)

Further details can be found, e.g., in appendix A of [10].

3In addition to these continuous symmetries, the S(A)dS background is invariant under discrete parity transformations,

which are typically taken to act by mapping points on a constant-radius sphere to their antipode.
4The decomposition into spherical harmonics obscures the counting of propagating degrees of freedom, which for a massless

spin-2 field on flat D-dimensional space is D(D − 3)/2. The counting can however be recovered by matching onto a plane

wave basis, see e.g. [12].
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There are correspondingly three different sectors of perturbations: one consists of the perturbations

proportional to (derivatives of) scalar harmonics:

H0, H1, H2, H0, H1, G, K (scalar perturbations), (2.11)

which we will refer to as scalar perturbations for simplicity. Another sector includes perturbations propor-

tional to (derivatives of) vector harmonics:

h0, h1, h2 (vector perturbations). (2.12)

Finally there is a single perturbation proportional to a tensor harmonic:

hT , (tensor perturbation). (2.13)

Since these perturbations all multiply different kinds of spherical harmonics (which have different SO(D−1)

Casimir eigenvalues), the three sectors decouple at the linear level.

Note that in D = 4 the hT perturbation is absent: the most general decomposition of a tensor harmonic

is contained already in the building blocks K(t, r)γijY
M
L , G(t, r)∇(i∇j)T Y

M
L and h2(t, r)∇(iY

(T )
j)

M
L [1]. In

this case the eigenvalues of the scalar and vector spherical harmonics happen to coincide for the two-sphere

but the scalar and vector modes continue to decouple because they have different parity eigenvalues. In

this case, the scalar (vector) modes correspond to the usual even (odd) modes.

Note also that in D = 4 we can replace the unit-normalized vector spherical harmonic in terms of a

gradient of a scalar harmonic as Y
(T )
i

M
L

D→4−−−→ ϵji∇jY
M
L /

√
L(L+ 1).5

Gauge transformations. A massless spin-2 field enjoys gauge invariance under linearized diffeomor-

phisms

δhµν = ∇µξν +∇νξµ. (2.14)

In order to see how the various fields shift under this transformation, we split the diffeomorphism parameter,

ξ in a similar way to what we did for the spin-1 field:

ξt =
∑
L,M

f(r)ξ0(t, r)Y
M
L , (2.15a)

ξr =
∑
L,M

f−1ξ1(t, r)Y
M
L , (2.15b)

ξi =
∑
L,M

ξS(t, r)∇iY
M
L + ξV (t, r)Y

(T )
i

M
L . (2.15c)

5There is a small difference in the normalization factor here with respect to the standard literature [1]. In addition, note

that there are other small differences between (2.6) and the definition of the metric perturbations in [1]. For instance, the

definitions of K and G differ by the subtraction of the trace from the harmonic multiplying G here, which was not done in [1].
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From this we can determine how the individual variables shift under a diffeomorphism:

δH0 = 2ξ̇0 −
f ′

f
ξ1, δh0 = ξ̇V , δhT = 0, (2.16a)

δH1 = f−1ξ̇1 + fξ′0, δh1 = −2r−1ξV + ξ′V , (2.16b)

δH2 = 2ξ′1 −
f ′

f
ξ1, δh2 = 2r−2ξV , (2.16c)

δH0 = ξ̇S + fξ0, (2.16d)

δH1 = f−1ξ1 − 2r−1ξS , (2.16e)

δK = 2r−1ξ1 −
2L(L+D − 3)

(D − 2)r2
ξS , (2.16f)

δG = 2r−2ξS . (2.16g)

Notice that the mode multiplying the tensor spherical harmonic Y
(TT )
ij is gauge invariant.

Quadratic action for the perturbations. Our starting point is the Einstein–Hilbert action6

S =

∫
dDx

√
−g

MD−2
Pl

2
(R− 2Λ), (2.17)

which we will expand up to quadratic order in perturbations. Since perturbations belonging to the scalar,

vector and tensor sectors decouple at this order, we shall treat them separately below.

Vector sector. Let’s start from the vector sector. The variables in this sector are h0, h1, h2. However,

we expect that there should only be one physical combination of these degrees of freedom, so we will have

to fix a gauge and integrate out auxiliary variables.

We choose to work in the so-called Regge–Wheeler gauge [1], defined by the condition

h2 = 0. (2.18)

It is clear from (2.16d) that we have enough freedom to reach this gauge by choosing ξV appropriately.

Note that fixing h2 = 0 directly at the level of the action is a consistent choice since the Regge–Wheeler

gauge is a full gauge fixing [14]. The remaining degrees of freedom are h0 and h1, and their action is given

(up to integrations by parts) by

SRW =

∫
dtdr rD−4

[
ḣ21 + h′0

2 +
4

r
h0ḣ1 − 2h′0ḣ1 +

2(D − 3)f + 2rf ′ − (L+ 1)(D − 4 + L)

r2
f h21

+
(L+ 1)(D − 4 + L)− 2rf ′

r2f
h20 +

4Λ

D − 2

(
fh21 − f−1h20

) ]
.

(2.19)

In this choice of variables, it is somewhat difficult to isolate the physical degree of freedom because neither

h0 nor h1 is obviously auxiliary. It is therefore useful to integrate in an additional auxiliary field Q in a

6Recall that the canonically normalized fluctuation for the metric is gµν = ḡµν + 2hµν/M
(D−2)/2
Pl , with ḡµν the Einstein

background metric.
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similar manner to [15–17], so that our action becomes

SRW =

∫
dtdr rD−4

[
2Q

(
ḣ1 +

2

r
h0 − h′0

)
−Q2 +

2(D − 3)f + 2rf ′ − (L+ 1)(D − 4 + L)

r2
f h21

+
(L+ 1)(D − 4 + L)− 2(D − 3)f − 2rf ′

r2f
h20 +

4Λ

D − 2

(
fh21 − f−1h20

) ]
.

(2.20)

The organizing principle is to make the derivatives of h0 and h1 appear as a perfect square and then to

introduce Q in such a way that integrating it out reproduces the original action.

The actions (2.20) and (2.19) are equivalent, but we can now integrate out h0 and h1 to get an action

only for Q. Their equations of motion set

h0 = − rf

(L− 1)(D − 2 + L)

[
(D − 2)Q+ rQ′] , (2.21)

h1 = − r2

(L− 1)(D − 2 + L)f
Q̇. (2.22)

We can then substitute these equations back into the action. In simplifying the resulting expression, it

is helpful to use the background equations of motion, which imply

f ′′ +
(D − 2)f ′

r
+

4Λ

D − 2
= 0. (2.23)

The action for Q then takes the form (after several integrations by parts)

SRW =

∫
dtdr

rD−2

(L− 1)(D − 2 + L)

[
1

f
Q̇2−fQ′2−

(
(L+ 1)(D − 4 + L)− (D − 4)f

r2
− Df ′

r
− 4Λ

D − 2

)
Q2

]
.

(2.24)

It is again useful to write things in terms of a canonically normalized Schrödinger variable. We define

ΨRW ≡
(

2rD−2

(L− 1)(D − 2 + L)

)1/2

Q, (2.25)

and transform to the tortoise coordinate. After integrations by parts the action takes the form

SRW =

∫
dtdr⋆

(
1

2
Ψ̇2

RW − 1

2

(
∂ΨRW

∂r⋆

)2

− 1

2
VRW(r)Ψ2

RW

)
, (2.26)

with the Regge–Wheeler potential

VRW(r) = f
(L+ 1)(D − 4 + L)

r2
+ f2

(D − 4)(D − 6)

4r2
− ff ′

(D + 2)

2r
− 4Λf

D − 2
. (2.27)

The Schrödinger equation following from the action (2.26) is

d2ΨRW

dr2⋆
+
(
ω2 − VRW(r)

)
ΨRW = 0, (2.28)

which is precisely theD-dimensional Regge–Wheeler equation [8]. Note, however, that ΨRW is not quite the

usual Regge–Wheeler variable: it is more properly called the Cunningham–Price–Moncrief variable [5, 18].
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The usual Regge–Wheeler variable is (up to a numerical factor) the time derivative of what we have called

ΨRW—see the box below and eq. (2.60) for a comparison with the Regge–Wheeler derivation in D = 4.

However, since both of these variables satisfy the same (Regge–Wheeler) equation, we will slightly abuse

terminology and refer to ΨRW as the Regge–Wheeler variable.

Scalar sector. Let’s then consider the scalar sector. In D = 4, this coincides with the even parity sector.

In this case, the relevant degrees of freedom are the variables H0, H1, H2,H0,H1, G,K.

It is convenient to fix a gauge where7

H0 = K = G = 0, (2.29)

so that the residual degrees of freedom are H0, H1, H2,H1. With the gauge choice (2.29), the action

becomes

SZ = L(L+D − 3)

∫
dtdr rD−4

[
Ḣ2

1 +
2f

r2

(
(D − 3)f +

2Λr2

D − 2
+ rf ′

)
H2

1 +
(D − 2)(rf ′ + (D − 3)f)

2L(L+D − 3)
H2

2

+H0

([
f ′ +

2(D − 3)f

r

]
H1 + 2fH′

1 −
(
1 +

(D − 3)(D − 2)f + (D − 2)rf ′

L(L+D − 3)

)
H2 −

(D − 2)rfH ′
2

L(L+D − 3)

)

− (2(D − 3)f + rf ′)

r
H2H1 +H1

(
H1 − 2Ḣ1 +

2(D − 2)r

L(L+D − 3)
Ḣ2

)]
.

(2.30)

Though this expression is fairly complicated, we expect that there should be a single physical degree of

freedom, and we would like to isolate it.

It is reasonably clear from the action that H1 is auxiliary; it can be integrated out via its equation of

motion, which sets

H1 = Ḣ1 −
(D − 2)r

L(L+D − 3)
Ḣ2. (2.31)

The variable H2 is also auxiliary, but in order to integrate it out we first trade off H1 for another variable

V defined by

V = H1 −
(D − 2)r

2L(L+D − 3)
H2. (2.32)

This makes H2 appear algebraically in the H0 equation of motion (which is a constraint), so that it can

be solved for in terms of V:

H2 =
2L(L+D − 3)

[
2f(rV ′ + (D − 3)V) + rf ′V

]
r
[
2L(L+D − 3)− 2(D − 2)f + (D − 2)rf ′

] . (2.33)

Substituting this solution back into the action eliminates both H2 and H0, because we have solved the

constraint that the latter enforces. We are therefore left with an action for only the variable V. After

7Note that this is slightly different compared to the Regge–Wheeler gauge of [1]—see also the box below. Analogously to

the vector sector above, both this gauge and the Regge–Wheeler gauge in the vector/odd sector can be used in the action, as

shown explicitly in [14], without losing information contained in the equations of motion.
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integration by parts it can be written as

SZ =

∫
dtdr rD−4F(r)

(
V̇2 − f2V ′2 +N (r)V2

)
, (2.34)

where the functions that appear are rather complicated:

F(r) ≡
8(D − 2)L(L+D − 3)f

[
(D − 3)L(L+D − 3)− (D − 3)(D − 2)f − 2Λr2 − (D − 2)rf ′

]
[
2L(L+D − 3)− 2(D − 2)f + (D − 2)rf ′

]2 ,

(2.35a)

N (r) ≡ A+ B + C
r2(2L(L+D − 3)2 − 2(D − 2)f + (D − 2)rf ′)

, (2.35b)

with the following expressions appearing in N :

A = 2f
[
−L2(L+D − 3)2 + f

(
2L(L+D − 3) + (D − 4)(D − 2)f + 4(D − 3)Λr2

)]
, (2.36a)

B = rff ′
[
3(D − 4)L(L+D − 3) + (D − 2)(24 +D(2D − 13))f + 4Λr2

]
, (2.36b)

C = r2f ′2
[
2L(L+D − 3) + (D − 2)(3D − 10)f + (D − 2)rf ′

]
. (2.36c)

We can canonically normalize the action by defining the Zerilli variable

ΨZ ≡
(
2frD−4F

)1/2 V, (2.37)

to finally obtain

SZ =

∫
dtdr⋆

(
1

2
Ψ̇2

Z − 1

2

(
∂ΨZ

∂r⋆

)2

− 1

2
VZ(r)Ψ

2
Z

)
, (2.38)

with the Zerilli potential

VZ(r) =
f V̂Z(r)

4(D − 2)r2H̄(r)2
, (2.39)

where we have defined the functions

H̄(r) ≡ 2L(L+D − 3)− 2(D − 2)f + (D − 2)rf ′ (2.40)

V̂Z(r) ≡ 4(D − 4)(D − 2)4f3 − 8(D − 2)2
[
(D − 2)(D − 6)L(L+D − 3)− 8(D − 3)Λr2

]
f2

+ 4(D − 2)
[
(D − 2)(D − 12)L2(L+D − 3)2 − 16(D − 4)L(L+D − 3)Λr2 + 32Λ2r4

]
f

+ 2(D − 2)3(D + 2)r3f ′3 − 4(D − 2)2r2
[
(D − 6)L(L+D − 3)− 4Λr2

]
f ′2 (2.41)

− 8(D − 2)2L2(L+D − 3)2rf ′ + 12(D − 2)5rf2f ′ + (D − 2)3(D(D + 10)− 32)r2ff ′2

− 4(D − 2)2
[
(D − 2)(3D − 8)L(L+D − 3)− 8DΛr2

]
rff ′

+ 16L2(L+D − 3)2
[
(D − 2)L(L+D − 3)− 4Λr2

]
.
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The corresponding equation of motion

d2ΨZ

dr2⋆
+
(
ω2 − VZ(r)

)
ΨZ = 0, (2.42)

is the D-dimensional Zerilli equation, and agrees with the expression derived in [8]. In D = 4 with Λ = 0,

it agrees with the usual Zerilli variable [18].

Black hole perturbations in D = 4. The notation and gauge choice in the derivation above do not

exactly mirror the original works by Regge and Wheeler [1], and Zerilli [2]. For completeness, we will

review here how the equations for the even and odd perturbations in D = 4 were originally derived.

The Schwarzschild metric in four-dimensional spacetime is given by the line element

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

S2 , f(r) = 1− rs
r
, (2.43)

where dΩS2 is the line element on the 2-sphere, dΩ2
S2 = dθ2 + sin2 θ dφ2. We shall decompose the

metric fluctuation as [1]

δgµν = δgoddµν + δgevenµν , (2.44)

with

δgoddµν =

 0 0 εkj∇kh0

0 0 εkj∇kh1

εki∇kh0 εki∇kh1
1
2(εi

k∇k∇j + εj
k∇k∇i)h2

 (2.45)

which parametrizes parity-odd perturbations (indices are raised and lowered with γij ≡ diag(1, sin2 θ)),

and

δgevenµν =

f(r)H0 H1 ∇jH0

H1 H2/f(r) ∇jH1

∇iH0 ∇iH1 C(Kγij +∇i∇jG)

 (2.46)

for perturbations of the even type. ∇i denotes a covariant derivative on the 2-sphere S2, and in

standard coordinates with metric γij ≡ diag(1, sin2 θ) it follows that

∇θ∇θ = ∂2θ , ∇ϕ∇ϕ = ∂2ϕ + sin θ cos θ∂θ , ∇θ∇ϕ = ∇ϕ∇θ = ∂θ∂ϕ −
cos θ

sin θ
∂ϕ

∇2 = ∂2θ +
1

sin2 θ
∂2ϕ +

cos θ

sin θ
∂θ .

(2.47)

The Levi–Civita tensors are, in components,(
εθθ εθϕ

εϕθ εϕϕ

)
= sin θ

(
0 1

−1 0

)
,

(
εθθ εθϕ

εϕθ εϕϕ

)
=

(
0 sin θ

−1/sin θ 0

)
(
εθ
θ εθ

ϕ

εϕ
θ εϕ

ϕ

)
=

(
0 1/sin θ

−sin θ 0

)
,

(
εθθ εθϕ

εϕθ εϕϕ

)
=

1

sin θ

(
0 1

−1 0

)
. (2.48)

The metric components h0, h1 and h2 are pseudo-scalars, i.e. they flip sign under a parity transformation

(θ, ϕ) → (π − θ, ϕ+ π), whereas the other scalar components do not. Let’s choose the gauge

H0 = H1 = G = h2 = 0 (Regge–Wheeler gauge), (2.49)
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and decompose in spherical harmonics as, e.g., H0 =
∑

LM

∫
dω
2π e−iωtH

(L,M)
0 (r)YM

L (θ, φ). Plugging the

decomposition (2.44) into the Einstein equations, one then finds the constraint H0 = H2 and obtains

the following first-order differential equations for the even sector [2]

dK
dr

+
2r − 3rs
2r(r − rs)

K − 1

r
H2 +

1

2

L(L+ 1)

iωr2
H1 = 0, (2.50)

dH2

dr
− 2rs − r

r(rs − r)
H2 −

2r − 3rs
2r(rs − r)

K +

[
iωr

r − rs
+
L(L+ 1)

2iωr2

]
H1 = 0, (2.51)

dH1

dr
− rs
r(rs − r)

H1 −
iωr

rs − r
H2 −

iωr

rs − r
K = 0, (2.52)

and the algebraic identity

L(L+ 1)rs − 4r3ω2

2iωr2
H1 −

(
L2 + L− 2

)
r + 3rs

r
H2

+
2
(
L2 + L− 3

)
rsr − 2r2

(
L2 + L− 2r2ω2 − 2

)
+ 3r2s

2r(rs − r)
K = 0. (2.53)

One can easily show that, after the field redefinitions

K = f(r)
dΨZ

dr
+

3r2s + 3λrsr + 2(λ+ 1)λr2

r2(3rs + 2λr)
ΨZ, (2.54)

H1 = −f(r) iωr
2

r − rs

dΨZ

dr
+
iω
(
3r2s + 6λrsr − 4λr2

)
2(r − rs)(3rs + 2λr)

ΨZ, (2.55)

with λ ≡ 1
2(L− 1)(L+ 2), and where H2 has been fixed from (2.53), the Einstein equations boil down

to the single second-order, Schrödinger-like, Zerilli equation (2.42) in D = 4, with potential

VZ(r) = f(r)

(
rs
r3

+
2λ

3r2
+

8λ2(2λ+ 3)

3(2λr + 3rs)2

)
. (2.56)

For the odd sector, the Einstein equations reduce to [1]

d2h0
dr2

+ iω
dh1
dr

− 2f(r) + L2 + L− 2

r2f(r)
h0 +

2iω

r
h1 = 0, (2.57)

dh0
dr

− 2

r
h0 +

(
iω +

(
L2 + L− 2

)
f(r)

iωr2

)
h1 = 0, (2.58)

dh1
dr

+
iω

f(r)2
h0 +

(
1

rf(r)
− 1

r

)
h1 = 0. (2.59)

The first equation above is a consequence of the last two. One can then use the third equation to solve

algebraically for h0. Plugging the solution back into the second equation and defining

ΨRW ≡ f(r)

r
h1, (2.60)

one finds the Schrödinger-like, Regge–Wheeler equation (2.28) with potential (2.27) with D = 4:

VRW(r) =
(
1− rs

r

)(L(L+ 1)

r2
− 3rs

r3

)
. (2.61)
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Tensor sector. Let’s conclude with the tensor sector. Inserting the decomposition (2.6) into the lin-

earized Einstein–Hilbert action, we get for the hT mode (up to total derivatives):

ST =

∫
dtdr rD−2

(
1

2f
ḣ2T − 1

2
fh′T

2 + f

[
D − 3

r2
+

6− 2D − L(L+D − 3)

2fr2
+
f ′

rf
+

2Λ

(D − 2)f

]
h2T

)
.

(2.62)

The equation of motion following from this action was derived in [8, 19]. We can express this action in

terms of a canonically normalized variable by making the field redefinition

ΨT ≡ r
D−2
2 hT , (2.63)

and adopting the tortoise coordinate dr⋆ = f−1dr. The action for ΨT is then (once again, after some

integration by parts)

ST =

∫
dtdr⋆

(
1

2
Ψ̇2
T − 1

2

(
∂ΨT

∂r⋆

)2

− 1

2
VT (r)Ψ

2
T

)
, (2.64)

where the potential is

VT (r) = f
L(L+D − 3) + 2(D − 3)

r2
+ f2

D(D − 14) + 32

4r2
+ ff ′

D − 6

2r
− 4Λf

D − 2
. (2.65)

As in the other cases, in frequency space the equation of motion for the radial degree of freedom takes the

form of a Schrödinger equation

d2ΨT

dr2⋆
+
(
ω2 − VT (r)

)
ΨT = 0, (2.66)

with the potential given in (2.65).

Summary. To summarize, the spherical symmetry of the background allowed us to decouple the

equations for the propagating modes. We were able to separate variables, factoring out the radial

profile of the fields, times an angular part which can be decomposed in full generality in terms of

scalar, vector and tensor harmonics. As a result, the problem of perturbations around non-rotating

black holes in general relativity has been reduced to ordinary differential equations. The equations can

in turn be cast in full generality in the Schrödinger form

d2Ψ

dr2⋆
+
(
ω2 − V (r)

)
Ψ = 0, (2.67)

where the potential depends on r and the quantum number L of the spherical harmonics, and schemat-

ically takes the form in figure 2.
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Figure 2: Potential for various values of L in D = 4. As a consequence of the spherical symmetry, the potential is

independent of the magnetic quantum number M .

2.2 Perturbations of Kerr black holes

We will now extend the previous discussion to rotating black holes in general relativity. As we shall

see, the problem of studying the dynamics of the perturbations of rotating black holes is more involved.

In order to determine the equations that govern the perturbations of the Kerr metric, the most natural

approach would seem to be as the one before; i.e., one would first like to expand the Kerr metric in

fluctuations, plug the perturbed metric into the Einstein–Hilbert action and possibly fix a convenient

gauge, and finally try to simplify the equations as much as possible to obtain a single master equation

for the metric perturbation, analogous to the Regge–Wheeler and Zerilli equations. Unfortunately, the

Kerr metric does not straightforwardly allow this, and in fact such a program has never been carried

out in this form. In D = 4, an alternative route to study black hole perturbations is possible with the

Newman–Penrose formalism: instead of considering perturbations of the metric, it turns out to be much

more fruitful to study perturbations of the curvature tensor. This formalism makes use of the components

of the Weyl tensor, which are projected along a null tetrad. Since the problem is thus significantly more

involved we will focus below only on Kerr black holes in D = 4. Another reason for choosing to discuss only

four-dimensional rotating black holes is because the landscape of rotating solutions in higher dimensions

is much richer than in D = 4. There is no uniqueness theorem and black holes solutions with nontrivial

horizon topologies are possible. Therefore, there is no general procedure that systematically applies to all

cases, as instead we were able to do for the Schwarzschild–Tangherlini solution.

The Kerr line element in Boyer–Lindquist coordinates is:

ds2 = −∆

ρ2
(
dt− a sin2 θ dφ

)2
+
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2
(
adt− (r2 + a2)dφ

)2
= −ρ

2 − rsr

ρ2
dt2 − 2arsr sin

2θ

ρ2
dtdφ+

ρ2

∆
dr2 + ρ2dθ2 +

(r2 + a2)2 − a2∆sin2θ

ρ2
sin2θdφ2,

(2.68)
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where we have defined the quantities

ρ2 ≡ r2 + a2 cos2 θ , ∆ ≡ r2 − rrs + a2 , (2.69)

where also ∆ = (r− r+)(r− r−) with r± ≡ rs/2±
√
(rs/2)2 − a2 being the locations of the inner and outer

horizons. It is useful to note the relations: r+r− = a2, a2 + r2+ = rsr+ and gtφ
2 − gttgφφ = ∆sin2θ.

Null tetrads. Given a space-time with metric gµν , a Newman–Penrose null tetrad is a set of four linearly

independent four-vectors, which we will denote with

zµa = (lµ, qµ,mµ, m̄µ), (2.70)

where a labels the four-vectors. The four-vectors lµ and qµ are real, while mµ and m̄µ are complex (one

being the complex conjugate of the other). These four-vectors are chosen to be null with respect to the

metric gµν i.e.,

gµν l
µlν = gµνq

µqν = gµνm
µmν = gµνm̄

µm̄ν = 0 . (2.71)

In addition, we can choose them in such a way that

gµν l
µqν = −1, gµνm

µm̄ν = 1 , (2.72)

while all the other products are zero. From these relations and the fact that zµa form a basis in D = 4, it

follows that the (inverse) metric can be written as

gµν = mµm̄ν +mνm̄µ − lµqν − lνqµ. (2.73)

As an example, it is straightforward to find a tetrad in flat spacetime; we can simply take

lµ = (1, 0, 0, 1), (2.74)

qµ =
1

2
(1, 0, 0,−1), (2.75)

mµ =
1√
2
(0, 1, i, 0), (2.76)

m̄µ =
1√
2
(0, 1,−i, 0), (2.77)

which can be used to express the Minkowski metric ηµν as

ηµν = mµm̄ν +mνm̄µ − lµqν − lνqµ. (2.78)

In the Kerr metric a possible choice of null tetrad is given, in Boyer–Lindquist coordinates, by the Kinnersley

tetrad:

lµ =
1

∆
(r2 + a2,∆, 0, a), (2.79a)

qµ =
1

2ρ2
(r2 + a2,−∆, 0, a), (2.79b)

mµ =
1√
2

1

r + ia cos θ
(ia sin θ, 0, 1,

i

sin θ
). (2.79c)

Again, these four-vectors satisfy orthogonality conditions and can be used to write the Kerr metric as in

(2.73).
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Newman–Penrose formalism. The Newman–Penrose formalism consists in projecting the Weyl tensor

onto the null tetrad. The Weyl tensor in D dimensions is defined as

Cµνρσ = Rµνρσ −
1

D − 2
(gµρRνσ − gµσRνρ − gνρRµσ + gνσRµρ) +

1

(D − 1)(D − 2)
(gµρgνσ − gµσgνρ)R.

(2.80)

Recall that the Weyl tensor has the same symmetries as the Riemann tensor: it is antisymmetric with

respect to the exchange of the first and the second pair of indices,

Cµνρσ = −Cνµρσ, Cµνρσ = −Cµνσρ, (2.81)

and it is symmetric under the exchange of the first and second pair,

Cµνρσ = Cρσµν , (2.82)

and satisfies cyclicity with respect to the last three indices,

Cµνρσ + Cµρσν + Cµσνρ = 0. (2.83)

In particular, the Weyl tensor vanishes when any pair of its indices is contracted, i.e. it is the trace-free

part of the Riemann tensor.

Projecting the D = 4 Weyl tensor onto the null tetrad we can define the Weyl scalars [20]

Ψ0 = Cµνρσl
µmν lρmσ, (2.84a)

Ψ1 = Cµνρσl
µqν lρmσ, (2.84b)

Ψ2 =
1

2
Cµνρσl

µqν (lρqσ +mρm̄σ) , (2.84c)

Ψ3 = Cµνρσq
µlνqρm̄σ, (2.84d)

Ψ4 = Cµνρσq
µm̄νqρm̄σ. (2.84e)

Similarly, one can project the Ricci tensor and define

Φ00 = −1

2
Rµν l

µlν , (2.85a)

Φ01 = −1

2
Rµν l

µmν , (2.85b)

Φ02 = −1

2
Rµνm

µmν , (2.85c)

Φ11 = −1

4
Rµν (l

µqν +mµm̄ν) , (2.85d)

Φ12 = −1

2
Rµνq

µmν , (2.85e)

Φ22 = −1

2
Rµνq

µqν . (2.85f)

In vacuum Rµν = 0 = R, so (2.85) vanish for gravitational waves at large distances from the source. In

general relativity, the two propagating degrees of freedom in a gravitational wave are described by the
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single complex quantity Ψ4 or, equivalently, Ψ0 which is proportional to Ψ∗
4 in the radiation zone. In fact,

recall that, for a gravitational wave on flat space propagating along the z axis,8

R0i0j = −1

2
ḧTT
ij , (2.87)

with

h11 = −h22 ≡ h+, h12 = h21 ≡ h×, (2.88)

and the only non-vanishing Weyl scalars are

Ψ0 = −1

2

(
ḧ+ + iḧ×

)
, (2.89a)

Ψ4 = −1

8

(
ḧ+ − iḧ×

)
, (2.89b)

which are related by complex conjugation, Ψ0 = 4Ψ∗
4.

Teukolsky equation. The Newman-Penrose formalism has been proven useful to obtain the generaliza-

tion of the Regge–Wheeler and Zerilli equations for Kerr black holes [21, 22]. The Einstein equations for a

perturbed Kerr metric are quite involved [20, 21]. The strategy is to introduce the tetrad {lµ, qµ,mµ, m̄µ}
and decompose it in background plus perturbations as follows:

lµ ≡ lµA + lµB, qµ ≡ qµA + qµB, mµ ≡ mµ
A +mµ

B, m̄µ ≡ m̄µ
A + m̄µ

B, (2.90)

where the subscript A denotes the background value of the tetrad vectors, while the subscript B represents

the perturbation. As unperturbed tetrad it is convenient to choose the Kinnersley tetrad (2.79), in such a

way that9

ΨA
0 = ΨA

1 = ΨA
3 = ΨA

4 = 0. (2.91)

The fact that ΨA = 0 implies that ΨB are invariant under linearized coordinate transformations. In

fact, since Ψ are scalar quantities, they transform under a gauge transformation xµ → x′µ = xµ + ξµ as

Ψ(x) → Ψ′(x′) = Ψ(x), i.e., to linear order in ξ,

Ψ′B(x) = ΨB(x)− ξµ∂µΨ
A(x), (2.92)

which means that ΨB does not transform if its background vanishes, ΨA = 0.

After a series of nontrivial manipulations, Teukolsky found that the perturbation equations for Ψ0 and

Ψ4 decouple, and can be written (in vacuum) in a unified form as [21][
(r2 + a2)2

∆
− a2 sin2 θ

]
∂2t ψ +

2arsr

∆
∂t∂φψ +

[
a2

∆
− 1

sin2 θ

]
∂2φψ

−∆−s∂r
(
∆s+1∂rψ

)
− 1

sin θ
∂θ (sin θ∂θψ)− 2s

[
a(2r − rs)

2∆
+ i

cos θ

sin2 θ

]
∂φψ

− 2s

[
rs(r

2 − a2)

2∆
− r − ia cos θ

]
∂tψ + (s2 cot2 θ − s)ψ = 0, (2.93)

8The transverse-traceless (TT) gauge is defined by

h0µ = 0, haa = 0, ∂ahab = 0, (2.86)

where a, b are spatial indices in D = 4 Minkowski space.
9The derivation actually holds more in general and applies to any Type D vacuum background metric [21].
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where s is the spin weight, and ψ = Ψ0 for s = +2, while ψ = (r − ia cos θ)4Ψ4 for s = −2. Eq. (2.93) is

known as the Teukolsky equation.

Quite remarkably, the Teukolsky equation (2.93) holds beyond spin 2: the perturbation equations for

massless spin-0, spin-1/2 and spin-1 fields on Kerr spacetime can all be cast in the same form (2.93).

For instance, in the case of electromagnetism, one shall identify ψ 7→ Fµνm̄
µqν for s = +1 and ψ 7→

(r − ia cos θ)2Fµνm̄
µqν for s = −1, while in the scalar case s = 0 and ψ becomes the Klein–Gordon field.

For spinors instead s = ±1/2—see [21] for a precise relation between ψ and the spinor field.

Not surprisingly, separation of variables in (2.93) does not work with spherical harmonics. Although

one can formally use spherical harmonics to parametrize the most general perturbation around Kerr, the

linearized dynamics of different harmonics no longer decouples for nonzero black hole spin. Nevertheless,

separation of variables is possible by using spheroidal harmonics. We shall decompose ψ as

ψ(s)(t, r, θ, φ) =

∫
dω

2π

∑
ℓ,m

R
(s)
ℓm(r)S

(s)
ℓm(θ) e

−iωt+imφ, (2.94)

where S
(s)
ℓm(θ) are spin-weighted spheroidal harmonics, satisfying the differential equation

1

sin θ
∂θ

(
sin θ∂θS

(s)
ℓm

)
+

[
a2ω2 cos2 θ − m2

sin2 θ
− 2saω cos θ − 2sm

cos θ

sin2 θ
− (s2 cot2 θ − s) +A

(s)
ℓ (ω)

]
S
(s)
ℓm = 0

(2.95)

where A
(s)
ℓ (ω) are the separation constants, which depend on the frequency and can be determined by

requiring that S
(s)
ℓm(θ) is regular on the interval θ ∈ [0, π]. Note that, for s = 0, S

(s)
ℓm(θ) reduce to the

spheroidal functions, while at aω = 0 they coincide with the spin-weighted spherical harmonic Y
(s)
ℓm (θ).

Note that, for generic values of the frequency ω, the separation constants A
(s)
ℓ (ω) do not admit in general

a closed-form expression, while they have to be solved for numerically (see, e.g., [23]).

Using the decomposition (2.94) where the spin-weighted spheroidal harmonics satisfy (2.95), one finds

the following equation for the radial profile of ψ [21]:

∆−s∂r

(
∆s+1∂rR

(s)
ℓm

)
+

[
K2(ω)− is(2r − rs)K(ω)

∆
+ 4isωr − λ

(s)
ℓm(ω)

]
R

(s)
ℓm = 0, (2.96)

where

K(ω) ≡ (r2 + a2)ω − am, (2.97)

λ
(s)
ℓm(ω) ≡ A

(s)
ℓm(ω) + a2ω2 − 2maω. (2.98)

Some comments are in order here. First, note that, as opposed to the Regge–Wheeler and Zerilli equa-

tions, the Teukolsky equation (2.96) depends explicitly on the magnetic quantum number m. This is not

surprising, as the background solution is no longer spherically symmetric: the effect of the rotation is to

break the degeneracy in m, resulting in an m-dependent potential. Second, note that the potential is

imaginary. In particular, in the limit a = 0 it does not immediately recover the Regge–Wheeler and Zerilli

potentials for s = ±2: in the zero-spin limit, the Teukolsky equation reduces in fact to the Bardeen–Press

equation [24]—a precursor of the more general Teukolsky equation for Kerr perturbations. In turn, the
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Bardeen–Press equation can be mapped onto the Regge–Wheeler and Zerilli equations via a generalized

Darboux transformation [25] (see also section 3.3 below). In addition, note that the Teukolsky equa-

tion, similarly to the Bardeen–Press equation, has a long-ranged potential. Let’s introduce the tortoise

coordinate
dr⋆
dr

=
r2 + a2

∆
, (2.99)

and let’s redefine the radial field R(−2) as

R(−2) ≡ ∆

(r2 + a2)1/2
R̃. (2.100)

The Teukolsky equation for s = −2 can then be rewritten in the canonical form

d2

dr2⋆
R̃+ UT R̃ = 0. (2.101)

It is straightforward to check that that, in the large-r limit, the potential UT scales as

UT (r → ∞) = ω2 − 4iω

r
+O(r−2). (2.102)

This should be contrasted with the Regge–Wheeler and Zerilli potentials which vanish as 1/r2 at large

distances. The 1/r scaling of the potential (2.102) is not particularly nice because it makes it harder to

accurately compute solutions to the separated radial equation in numerical implementations. In the 1970s,

Chandrasekhar and Detweiler [26, 27] were able to show, via a generalized Darboux transformation, that

it is possible to recast the Teukolsky equation in a form such that the potential has a number of attractive

properties [25, 28]: in particular, it is real when ω is real, and it is short-ranged i.e., it goes to zero as

∼ 1/r2 at large r.
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3 Symmetries of black hole perturbations

In this section, we focus on the dynamics of the perturbations of Schwarzschild and Kerr black holes in

general relativity in D = 4, and discuss and series of symmetry properties.

3.1 Teukolsky–Starobinsky identities and spin ladders

One well-known example of duality for the perturbations of Kerr black holes is given by the Teukolsky–

Starobinsky identities [29, 30]. The Teukolsky–Starobinsky identities are relations that connect solutions to

the Teukolsky equation with spin index −s to those with +s, and viceversa. In Chandrasekhar’s notation

[22], the identities are

ψ(−1) = ∆D†
0D

†
0∆ψ

(1), ψ(1) = D0D0ψ
(−1), for spin 1, (3.1)

and

ψ(−2) = ∆2D†
0D

†
0D

†
0D

†
0∆

2ψ(2), ψ(2) = D0D0D0D0ψ
(−2), for spin 2, (3.2)

where

D0 ≡ ∂r + i
am− ω(r2 + a2)

∆
. (3.3)

Note that these relations hold for any value of the frequency ω. They provide a relation between ψ(+s) and

ψ(−s), but they in general do not allow to connect fields with different |s|. Something interesting happens

however at zero frequency: when ω = 0, these operations can be truncated, enabling us to increment s by

unity and still obtain a solution to the static Teukolsky equation, e.g.,

ψ(0) = E−ψ(1), ψ(2) = E+
1 ψ

(1), etc., (3.4)

where we introduced for convenience10

E− ≡ ∂r , E+
s ≡ ∆∂r + s(r+ + r− − 2r) + 2iam , (3.5)

which can thus be interpreted as spin ladder operators [31].

3.2 Chandrasekhar’s duality in D = 4

In section 2.1, we derived the equations for the perturbations of Schwarzschild black holes in generic D-

dimensions (withD ≥ 4). Interestingly, theD = 4 case turns out to be special because, as opposed to higher

dimensions (D > 4), the equations for the perturbations display a series of nontrivial symmetries which

constrain the dynamics and the form of the physical solutions. One notable example is the Chandrasekhar

duality in D = 4 [22, 32], which relates sectors of opposite parity of massless spin-s perturbations in a black

hole background. In particular, it provides a mapping between the Regge–Wheeler and Zerilli potentials

for gravitational perturbations.11

10In this notation, the Teukolsky–Starobinsky identities (3.1) and (3.2), in the ω = 0 limit, read ψ(−1) = E−E−ψ(1),

ψ(1) = E+
0 E

+
−1ψ

(−1) for spin 1, and ψ(−2) = E−E−E−E−ψ(2), ψ(2) = E+
1 E

+
0 E

+
−1E

+
−2ψ

(−2) for spin 2.
11The Chandrasekhar duality is realized “trivially” at the level of the Teukolsky equation. See instead Ref. [11, 33] for a

discussion about partially-massless spin-2 fields on Schwarzschild-(A)dS spacetimes.
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In four dimensions, the action for the physical degrees of freedom derived in section 2.1 simplifies dra-

matically. The Regge–Wheeler and Zerilli variables still decouple (now as a consequence of parity) and

their combined action can be written as12

S =
1

2

∫
dtdr⋆

(
Ψ̇2

RW −
(
∂ΨRW

∂r⋆

)2

− VRW(r)Ψ2
RW + Ψ̇2

Z −
(
∂ΨZ

∂r⋆

)2

− VZ(r)Ψ
2
Z

)
. (3.6)

The Regge–Wheeler and Zerilli potentials take the simplified form

VRW(r) = f(r)

(
L(L+ 1)

r2
− 3rs

r3

)
, (3.7)

VZ(r) = f(r)

(
rs
r3

+
2λ

3r2
+

8λ2(2λ+ 3)− 18Λr2s
3(2λr + 3rs)2

)
, (3.8)

where the function f(r) is given by

f(r) = 1− rs
r
− Λr2

3
, (3.9)

and we define

λ ≡ 1

2
(L− 1)(L+ 2). (3.10)

The action (3.6) possesses a duality symmetry, which follows from Chandrasekhar’s observation that both

the Regge–Wheeler and Zerilli potentials can be derived from a single superpotential [34],

W (r) =
3rs(rs − r)

r2(3rs + 2λr)
− 2λ(λ+ 1)

3rs
+

Λrs r

3rs + 2λr
, (3.11)

in the sense that

VRW =W 2 + f(r)
dW

dr
+ κ, (3.12)

VZ =W 2 − f(r)
dW

dr
+ κ, (3.13)

where we have defined the constant

κ ≡ −4λ2(λ+ 1)2

9r2s
. (3.14)

This is a manifestation of the fact that the Regge–Wheeler and Zerilli potentials are partner potentials

in the sense of supersymmetric quantum mechanics [35]. Rewriting the Regge–Wheeler and Zerilli poten-

tials in terms of W , it is in fact straightforward to check that the action is invariant under the duality

transformation

δΨZ =

(
∂

∂r⋆
−W (r)

)
ΨRW, (3.15a)

δΨRW =

(
∂

∂r⋆
+W (r)

)
ΨZ, (3.15b)

which is a true off-shell symmetry, much as electric-magnetic duality is for spin-1 fields. Incidentally, be-

cause the Regge–Wheeler and Zerilli equations are linear, this implies that the right hand sides of eqs. (3.15)

12Recall that in D = 4 the hT perturbation in (2.6) does not propagate.
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are solutions to the Zerilli and Regge–Wheeler equations respectively. The symmetry is continuous, and

therefore it also gives rise to a conserved Noether current:

J t = −Ψ′
ZΨ̇RW − Ψ̇ZΨ

′
RW +W

(
ΨRWΨ̇Z −ΨZΨ̇RW

)
, (3.16)

Jr⋆ = Ψ̇ZΨ̇RW +Ψ′
ZΨ

′
RW +W

(
ΨZΨ

′
RW −ΨRWΨ′

Z

)
−
(
W 2 + β

)
ΨZΨRW, (3.17)

which obeys the conservation law ∂tJ
t + ∂r⋆J

r⋆ = 0.

The Chandrasekhar’s duality has a number of interesting consequences. The main one is the fact that it

is ultimately responsible for the isospectrality of the even and odd sectors in D = 4 for Schwarzschild-dS

black holes: as we will see below, this means that even and odd sectors have same set of quasi-normal modes

(QNMs) when Λ ≥ 0 [34]. In addition to isospectrality, the conservation of the current also is responsible for

even and odd parity tidal Love numbers being equal in D = 4 (see section 6). Importantly, this symmetry

does not rely on auxiliary variables having been integrated out: it is possible to uplift the Chandrasekhar

duality to an off-shell symmetry of the Einstein–Hilbert action linearized around Schwarzschild [36].

An alternative perspective on the relation between the Regge–Wheeler and Zerilli potentials is that the

Chandrasekhar symmetry is an example of a Darboux transformation between differential equations [25],

as we will now review. From this point of view, the distinguishing feature of D = 4 is that a transformation

can be found that preserves the boundary conditions of interest in physical situations [37]. This is also

what goes wrong with AdS asymptotics: there the Chandrasekhar transformation does not preserve such

boundary conditions, so the two sectors are not isospectral even in D = 4 [34].

3.3 Darboux transformations

Let us start considering two distinct sectors, each one containing a single degree of freedom, whose linearized

dynamics is described by a one-dimensional Schrödinger-like equation of the form

d2Ψ±
dr2⋆

+ V±Ψ± = 0 . (3.18)

The ± symbol is used to denote the two sectors, V+ and V− are the two potentials which will in general

depend on the frequency ω, while r⋆ ∈ (−∞,+∞) is the variable that in general corresponds to the radial

tortoise coordinate. For the moment, we shall keep V± generic.

Let us consider the most general linear transformation relating the on-shell fields Ψ+ and Ψ−. Given

that the equations of motion are second order, we can write it in general as

Ψ+ = β(r⋆)∂r⋆Ψ− + F (r⋆)Ψ− , (3.19)

which belongs to the class of the so-called (generalized) Darboux transformations discussed in [25] and

originally introduced by G. Darboux in [38]. In (3.19), β and F are functions of r⋆ and they are assumed

to be regular as r⋆ → ±∞.

Plugging (3.19) into the equation for Ψ+ and using the Ψ−’s equation of motion, one can derive the
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following constraints on β and F [25]:

2∂r⋆F + ∂2r⋆β + β(V+ − V−) = 0 , (3.20a)

∂2r⋆F − β−1∂r⋆(β
2V−) + F (V+ − V−) = 0 . (3.20b)

Solving for F , after simple manipulations one finds the following integro-differential equation for β,

∂3r⋆β + 2(V+ + V−)∂r⋆β + β∂r⋆(V+ + V−)

V+ − V−
=

∫
dr⋆ β(V− − V+) . (3.21)

Thus, looking in general for a duality between even and odd sector amounts to solving the integro-

differential equation (3.21) for β—or, equivalently, the fourth-order differential equation for β obtained

after taking the derivative of (3.21).

Alternatively, Eqs. (3.20) can be combined in a Riccati equation,

F 2 + F∂r⋆β − β∂r⋆F + β2V− = constant , (3.22)

where the right-hand side denotes an integration constant that results from removing an overall derivative

in r⋆. Note that the quantity on the left-hand side of (3.22) is precisely the proportionality factor between

the Wronskians W± associated with the equations (3.18). Indeed, denoting with Ψ
(1,2)
± any two linearly

independent solutions in each sector, then, using (3.19), one finds

W+ ≡ Ψ
(1)
+ ∂r⋆Ψ

(2)
+ −Ψ

(2)
+ ∂r⋆Ψ

(1)
+ =

(
F 2 + F∂r⋆β − β∂r⋆F + β2V−

)
W− . (3.23)

The Riccati equation (3.22) implies thatW+ = constant×W−, which guarantees that, if the transformation

preserves the boundary conditions, then the two sectors have a common set of QNMs, defined as the values

of the frequency for which the Wronskians vanish [39–41].13

The Chandrasekhar relation of section 3.2 [22, 32, 42] for the massless spin-2 field belongs to the subclass

of transformations (3.19) with β ≡ 1 [25],

Ψ+ = ∂r⋆Ψ− + F (r⋆)Ψ− . (3.24)

In this case, (3.21) becomes a consistency condition for the potentials V±:

∂r⋆(V+ + V−)

V+ − V−
=

∫
dr⋆(V− − V+) , (3.25)

which is famously satisfied by the Regge-Wheeler and Zerilli potentials VRW/Z. The form of the Darboux

transformation is then unambiguously fixed in terms of the potentials by

F =
∂r⋆(V+ + V−)

2(V+ − V−)
. (3.26)

13It is worth emphasizing that the proportionality factor between the Wronskians is constant in r⋆, but it can, and in general

will, depend on the frequency ω. The values of ω for which this constant factor vanishes are usually referred to as algebraically

special modes, which we will disregard in the following. More details can be found e.g. in [34].
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4 Quasi-Normal Modes

4.1 Quasi-normal modes vs. normal modes

In normal-mode analysis, one usually deals with a finite system whose evolution is described by an ordi-

nary differential equation (ODE), or a systems of ODEs, which are solved by imposing certain boundary

conditions, e.g. the vanishing of the wavefunction outside a finite region of space. The result is a discrete

spectrum of real frequencies which correspond to the normal modes of the system.

Example: The standard example is a finite, one-dimensional string with fixed ends. The system is

described by a self-adjoint differential operator with discrete spectrum corresponding to a complete set

of normal modes. If L is the length of the string, ρ the density and T the tension, the propagation of

vibrational modes in the string is described by the wave equation

∂2ψ(t, x)

∂x2
− 1

v2
∂2ψ(t, x)

∂t2
= 0, (4.1)

where v2 ≡ T/ρ. Imposing the Dirichlet boundary conditions ψ(t, 0) = ψ(t, L) = 0 at the ends of the

string, the solution to the wave equation can be expressed as

ψ(t, x) =
∑
n

An e
−iωnt ψn(x), ψn(x) = sin(ωnx/v) (4.2)

with

ωn =
πn

L

√
T

ρ
, n ∈ N, (4.3)

where ωn ∈ R.

Perturbations of black holes or neutron stars are different with respect to the example above on various

aspects (see, e.g., [34, 39, 40, 43] for some reviews on the topic). First of all, perturbations propagate

through all space and can escape to infinity. In this sense, a relativistic compact object is more similar

to an open system, e.g. waves on an infinite string. However, differently from a scattering problem in the

presence of a potential barrier, as we shall see, the boundary conditions in the black hole problem force

the spectrum to be complex, like in dissipative systems.14

Let us go back to the potential in figure 2 and consider the differential equation (2.67). We are interested

in solving the following boundary-value problem: perturbations satisfy outgoing conditions at r⋆ → +∞
and infalling conditions at r⋆ → −∞; i.e.,

Ψ(r⋆ → +∞) → e−iω(t−r⋆), (4.4)

Ψ(r⋆ → −∞) → e−iω(t+r⋆) . (4.5)

14In contrast, in the Newtonian limit, a non-relativistic star made of an ideal fluid, in the absence of internal dissipation

and of gravitational radiation that carries away energy, has a real spectrum of undamped oscillations.
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As opposed to a scattering problem, where one is interested e.g. in computing reflected and transmitted

amplitudes given an incoming wave, there are only outgoing waves here. Eq. (4.5) follows from the require-

ment that classically nothing can leave the horizon, while (4.4) is because we are interested in studying the

perturbations of isolated objects and their emitted gravitational waves—of course, (4.4) will be modified

if one is interested in studying a different problem, such as for instance (dark) matter accretion of a black

hole immersed in an external environment.

4.2 Quasi-normal modes as poles of the Green’s function

The QNM contribution to the response of the perturbed black hole can be understood by studying the

poles of the Green’s function of the system [34, 40, 44–46]. Imagine of perturbing a black hole, e.g. by

simply throwing a small mass into it. In the end, the problem boils down to solving an inhomogeneous

differential equation of the form (
∂2t − ∂2x + V (x)

)
Ψ(t, x) = J(t, x), (4.6)

where x generically denotes a spatial coordinate. In the QNM problem, one shall identify x with the

tortoise coordinate—compare eq. (4.6) with (2.67), where we simply added a source term to the right-hand

side to describe the external perturbation.

The solution to the inhomogeneous equation (4.6), which describes the evolution of the black hole in the

presence of an external perturbing source, can be found by standard Green’s function methods as follows:

Ψ(t, x) =

∫
dt′dx′G(t, x; t′, x′)J(t′, x′), (4.7)

where G(t, x; t′, x′) satisfies (
∂2t − ∂2x + V (x)

)
G(t, x; t′, x′) = δ(t− t′)δ(x− x′), (4.8)

subject to the boundary condition

G = 0, if t < t′. (4.9)

The Green’s function only depends on the difference t−t′. We will assume that the initial data has compact

support—or, it is at least sufficiently localized. We can introduce the Laplace transform

G(s, x;x′) =

∫ ∞

0
dt e−stG(t, x; 0, x′), (4.10)

such that we can rewrite the eq. (4.8) as

LxG(s, x;x′) ≡
(
−∂2x + s2 + V (x)

)
G(s, x;x′) = δ(x− x′). (4.11)

The inverse is

G(t, x; t′, x′) =

∫ c+i∞

c−i∞

ds

2πi
es(t−t

′)G(s, x;x′), (4.12)

where the integral runs vertically in the complex plane, i.e. parallel to the imaginary axis, with a positive

real part in such a way that all the singularities of G(s, x;x′) lie on its left. We will ask that G(s, x;x′)

stays bounded in Re(s) > 0, as required by G(t, x; t′, x′) = 0 for t < t′.
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Construction of the Green’s function. We shall now give a constructive procedure to obtain the

Green’s function G(t, x; t′, x′) [40, 47]. Recall that, for x ̸= x′, G(s, x;x′) solves LxG(s, x;x′) = 0. Thus,

for both x > x′ and x < x′, we can express G(t, x; t′, x′) in terms of solutions of the homogeneous equation.

Take two independent solutions, say Ψ±(s, x),
15 such that

Ψ+(s, x→ −∞) → esx, (4.13)

Ψ−(s, x→ +∞) → e−sx . (4.14)

Boundedness of G(s, x;x′) in the right half of the complex plane, Re(s) > 0, requires that

G(s, x;x′) ∝ Ψ−(s, x), for x > x′, (4.15)

G(s, x;x′) ∝ Ψ+(s, x), for x < x′. (4.16)

The x′-dependent coefficients can then be determined by imposing the correct junction conditions at x = x′.

Continuity of G across x = x′ implies that

G(s, x;x′) = A(x′)
[
Ψ+(s, x

′)Ψ−(s, x)Θ(x− x′) + Ψ−(s, x
′)Ψ+(s, x)Θ(x′ − x)

]
, (4.17)

where Θ is the Heaviside step function. Integrating the Green’s function equation in a neighborhood of x′,

and using the continuity of G, one then finds

lim
ε→0

[
−∂xG(s, x;x′)

∣∣
x=x′+ε

+ ∂xG(s, x;x
′)
∣∣
x=x′−ε

]
= 1, (4.18)

which fixes the overall A(x′):

1

A(x′)
= −Ψ+(s, x

′)∂x′Ψ−(s, x
′) + Ψ−(s, x

′)∂x′Ψ+(s, x
′) ≡ W[Ψ+,Ψ−](s), (4.19)

which coincides with the Wronskian of the homogeneous Schrödinger-like equation. All in all,

G(s, x;x′) =
1

W
[
Ψ+(s, x

′)Ψ−(s, x)Θ(x− x′) + Ψ−(s, x
′)Ψ+(s, x)Θ(x′ − x)

]
. (4.20)

Note that the Wronskian is conserved, i.e. ∂xW = 0. The Wronskian depends on s but not on the spatial

coordinate x.

We are now interested in understanding the analytic structure of G(s, x;x′). Let’s start by focusing on

the roots of W(s), which correspond to the poles of the Green’s function. Note that W(s) = 0 happens

whenever Ψ− ∝ Ψ+. This means that the values of s where W(s) = 0 are such that the solution for

Ψ simultaneously satisfies outgoing conditions at both boundaries: these are precisely the quasi-normal

modes, according to the definition above.

Note that, for real potentials, the QNMs always come in complex conjugate pairs: if Ψ(sQNM, x) is a

QNM solution, then Ψ∗(s∗QNM, x) solves the same equation.

15Although we use the same notation, Ψ± here should not be confused with the Ψ± of section 3.3.
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Putting everything together:

Ψ(t, x) =

∫
dt′dx′

∫ c+i∞

c−i∞

ds

2πi
es(t−t

′)G(s, x;x′)J(t′, x′) =

∫
dx′
∫ c+i∞

c−i∞

ds

2πi
estG(s, x;x′)J(s, x′). (4.21)

If the analytic structure of the Green’s function consisted in just simple poles, given by the zeros of W(s),

for a well-behaved G(s, x;x′) in the limit |s| → ∞ with Re(s) < 0, we would compute the integral in (4.21)

by closing the contour on the left of the complex plane and would find

Ψ(t, x)
?
=
∑
q

esqtRes

(
1

W(s)
, sq

)[
Ψ−(sq, x)

∫ x

−∞
dx′Ψ+(sq, x

′)J(sq, x
′)

−Ψ+(sq, x)

∫ ∞

x
dx′Ψ−(sq, x

′)J(sq, x
′)

]
. (4.22)

For instance, assuming that the initial data has compact support, with J(s, x′) nonzero in x′ ∈ [x1, x2],

taking x > x2 we could write

Ψ(t, x)
?
=
∑
q

cq e
sqtΨ−(sq, x), cq ≡

(
dW(sq)

ds

)−1 ∫ x2

x1

dx′Ψ+(sq, x
′)J(sq, x

′), (4.23)

to be contrasted with eq. (4.2). The final result would then appear to mirror exactly the normal mode

case in (4.2), where the solution is expressed as a sum of ‘normal’ functions which form a basis, the only

difference being that here sq are not real. In this picture, just like for normal modes, QNMs are seen as

a property of the black hole or the neutron star, and describe how the system oscillates in response to an

external perturbation. Despite the similarity, there are however some crucial differences. First of all, the

definition of completeness cannot be directly translated to the QNM problem [39, 48]: in fact, the domain

of the operator typically extends to infinity, where the QNM solutions diverge. In addition, while Ψ+ is an

analytic function throughout the complex s-plane, the solution Ψ− has an essential singularity at s = 0.

Furthermore, there is a branch cut extending from s = 0 to −∞. This difference between Ψ− and Ψ+ can

be traced back to the fact that the potential falls off exponentially in x as x→ −∞, while it decays as 1/x2

for x→ +∞. The analytic structure in the complex plane is summarized in figure 3 [40]. Finally, there is

an additional contribution due to the arcs of the semi-infinite circle of the integration contour: this carries

information about high-frequency signals, which are insensitive to the potential and effectively propagate

in flat space [40, 49].

Despite these complications, for practical purposes, QNMs provide an accurate enough description of

the ringdown, before the power-law tail takes over. As we shall see explicitly, while the tail depends on the

long-range behavior of the potential, the QNM spectrum is mainly determined by the form of the potential

around the maximum of the potential.

Summary: To summarize, for a system with an incomplete set of QNMs, eq. (4.23) is modified as

Ψ(t, x) =
∑
q

cq e
sqtΨ−(sq, x) + (other contributions), (4.24)
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Figure 3: Picture taken from [40].

where ‘other contributions’ refers to the additional features in the analytic structure of the solution,

other than simple poles. All in all, at the level of the time-domain Green’s function, the final result can

be separated into three qualitatively distinct pieces: the piece of the Green’s function associated with

the QNM poles where the Wronksian vanishes; the contribution from the branch cut (which tends to

be subdominant compared to the QNM poles at intermediate times); and the flat piece of the Green’s

function from the arcs at infinity.

The QNMs are labeled in general by three numbers: the overtone n, and the quantum numbers ℓ and

m.

4.3 Computing quasi-normal modes

It is instructive to consider a simple toy model that admits an exactly solvable spectrum of QNMs.

Example: Let’s consider a field Ψ with dynamics given by [34]

d2Ψ

dr2⋆
+

[
ω2 − V0

cosh2 (α(r⋆ − r̄⋆))

]
Ψ = 0, (4.25)

where α, V0 and r̄⋆ constant parameters such that

dV

dr⋆
(r⋆ = r̄⋆) = 0, V0 = V (r̄⋆), α2 = − 1

2V0

d2V

dr2⋆
(r⋆ = r̄⋆). (4.26)
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Defining ξ ≡ [1 + e−2α(r⋆−r̄⋆)]−1, we shall rewrite

ξ2(1− ξ)2
d2Ψ

dξ2
− ξ(1− ξ)(2ξ − 1)

dΨ

dξ
+

[
ω2

4α2
− V0
α2
ξ(1− ξ)

]
Ψ = 0. (4.27)

Moreover, defining

a ≡ 1

2α

[
α+

√
α2 − 4V0 − 2iω

]
, b ≡ 1

2α

[
α−

√
α2 − 4V0 − 2iω

]
, c ≡ 1− iω

α
, (4.28)

and Ψ = [ξ(1− ξ)]−iω/(2α)ϕ, the equation takes the standard hypergeometric form

ξ(1− ξ)ϕ′′ + [c− (a+ b+ 1)ξ]ϕ′ − abϕ = 0. (4.29)

The two independent solutions can be written in the form

Ψ = Aξiω/(2α)(1− ξ)−iω/(2α) 2F1 (a− c+1, b− c+1; 2− c; ξ)+B[ξ(1− ξ)]−iω/(2α) 2F1 (a, b; c; ξ). (4.30)

Recall that: at spatial infinity (i.e., r⋆ → +∞) ξ → 1 and 1−ξ ∼ e−2αr⋆ ; at the horizon (i.e., r⋆ → −∞)

ξ → 0 and ξ ∼ e2αr⋆ . Thus, since 2F1(a, b; c; 0) = 1 and [ξ(1− ξ)]−iω/(2α) ∼ e−iωr⋆ while ξiω/(2α) ∼ eiωr⋆

at the horizon, the first solution in Ψ represents an outgoing wave, while the second one is infalling.

We shall thus set A = 0 and

Ψ = B[ξ(1− ξ)]−iω/(2α) 2F1 (a, b; c; ξ)

= B[ξ(1− ξ)]−iω/(2α)
[
(1− ξ)c−a−b

Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
2F1 (c− a, c− b; c− a− b+ 1; 1− ξ)

+
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1 (a, b; a+ b− c+ 1; 1− ξ)

] (4.31)

where we used the identities of the hypergeometric function. As ξ → 1,

Ψ(ξ → 1) → B eiωr⋆
[
e−2αr⋆(c−a−b) Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
+

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

]
. (4.32)

Requiring Ψ(ξ → 1) ∼ eiωr⋆ implies that 1
Γ(a) = 0, or 1

Γ(b) = 0, which are satisfied for

ωn = ±
√
V0 −

α2

4
− iα

2
(2n+ 1), n = 0, 1, 2, . . . (4.33)

In contrast with the toy example above, in physical situations, such as Schwarzschild or Kerr black

holes in general relativity, the QNMs cannot be computed analytically. One has to resort to numerical or

approximate methods. The most common approaches include: eikonal limit, inverted potential method

[50–52], WKB approach [53], Leaver method (or continued-fraction method) [54], direct integration (or

shooting method), time evolution, uniform approximation techniques [55]. See e.g. [34, 43, 56] for some

reviews.
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In the following, I will review the semi-analytic method introduced in [53]. However, instead of following

the standard approach of Schutz and Will [53], I will adopt a slightly different, but equivalent, perspective

used in [57].

The WKB approximation. Just like vibration modes in a medium originating from a perturbed object,

QNMs can be thought of as waves moving around a black hole. More precisely, QNMs are interpreted as

waves that originate at the light ring (the unstable circular null geodesic). This can be made more rigorous

in terms of the WKB approximation [53].

It is convenient to think of the Schrödinger-like equation (2.67),

d2Ψ

dr2⋆
+
(
ω2 − V (r)

)
Ψ = 0, (4.34)

in terms of an Hamiltonian formulation [57]. In order to make contact with the standard notation of

Hamilton’s mechanics, let’s map the variable r⋆ to a fictitious time coordinate τ and the fields Ψ to

the generalized coordinates q, and introduce the canonical conjugate momentum p. The time dependent

Hamiltonian

H(q, p, τ) =
1

2
p2 +

1

2

(
ω2 − V (τ)

)
q2, (4.35)

reproduces (4.34), as it can be easily checked by using Hamilton’s equations

q̇ =
∂H

∂p
= p, ṗ = −∂H

∂q
= −

(
ω2 − V (τ)

)
q. (4.36)

Hamilton’s equations written in matrix form are

d

dτ

(
q

p

)
=

(
0 1

−ω2 + V (τ) 0

)(
q

p

)
. (4.37)

The boundary conditions for the QNMs are

q ∼

e+iωτ for τ → +∞,

e−iωτ for τ → −∞.
(4.38)

When multiplied by the imaginary unit i, (4.37) is formally the time-dependent Schrödinger equation with

a non-hermitian evolution operator. Since |τ V (τ)| → 0 for τ → ±∞, it is natural to perform a (complex)

canonical transformation that diagonalizes the time evolution in the asymptotic region. Defining

ξ± ≡ 1√
2

(√
ω q ± i

p√
ω

)
, (4.39)

the evolution equation becomes

i
d

dτ

(
ξ+

ξ−

)
=

[(
+ω 0

0 −ω

)
+
V (τ)

2ω

(
+1 +1

−1 −1

)](
ξ+

ξ−

)
, (4.40)
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while the boundary conditions are simply ξ+ → 0, ξ− ∼ eiωτ , for τ → +∞

ξ+ ∼ e−iωτ , ξ− → 0, for τ → −∞.
(4.41)

In this basis it becomes transparent that for ω real in the asymptotic region |τ | → ∞ the evolution is unitary

and governed by the asymptotic eigenvalues ±ω. The boundary conditions correspond to the requirement

that the system undergoes a transition from an eigenstate with eigenvalue +ω at early times to one with

eigenvalue −ω at late times. In the case of a slowly varying Hermitian evolution operator, the adiabatic

theorem of quantum mechanics implies that transitions occur efficiently only when two eigenvalues become

(almost) degenerate, as in the well-known Landau–Zener effect (i.e. close to a level crossing, usually lifted

by perturbations in a quantum mechanical system).

The eigenvalues are:

λ± = ±
√
ω2 − V . (4.42)

For a potential of the form discussed above (see, e.g., figure 2), single level crossing occurs when

ω2 = Vmax, (4.43)

where Vmax denotes the maximum of the potential V . Alternatively, this can be heuristically justified also

by noticing that the QNM boundary conditions can be fulfilled by requiring the outgoing waves to have

equal amplitudes both at the horizon and spatial infinity [53]: this can be accommodated only if ω2 ≃ Vmax

(otherwise, for ω2 < Vmax, there would be a region where the modes are exponentially damped).

Expanding the potential in the wave equation around the maximum:

d2Ψ

dr2⋆
+

[
ω2 − Vmax −

1

2
V ′′(r̄⋆)(r⋆ − r̄⋆)

2

]
Ψ = 0, (4.44)

where r̄⋆ denotes the location of the maximum i.e., Vmax ≡ V (r̄⋆). This equation admits an exact solution

in terms of parabolic cylinder functions [53],

Ψ = ADν(z) +BD−ν−1(iz), z ≡ [2V ′′(r̄⋆)]
1/4 e

iπ
4 (r⋆ − r̄⋆) , (4.45)

with ν ≡ −i(ω2 − Vmax)/
√

2V ′′(r̄⋆)− 1/2. Using the asymptotic expansion of the cylinder functions, and

requiring outgoing boundary conditions at spatial infinity and infalling waves at the horizon, one finds the

condition
1

Γ(ν)
= 0. (4.46)

This implies a “Bohr–Sommerfeld quantization rule” for the QNM frequencies,

ω2 − Vmax√
2V ′′(r̄⋆)

= i

(
n+

1

2

)
, n = 0, 1, 2, . . . (4.47)

corresponding to the leading-order WKB approximation.

Subleading corrections can be systematically computed but taking into account higher orders in the

expansion [34]. It is worth stressing that the WKB approach is not particularly efficient for precise

calculations of the QNM frequencies. For high precision calculations of the frequencies one can resort

instead to the Leaver method or uniform approximation techniques. The WKB approximation works

better and better for large ℓ, but becomes less accurate for large overtones.
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4.4 Nonlinear corrections to quasinormal modes

In the previous part of this section, we reviewed the derivation of QNMs and discussed how to compute

them from the equations that describe the linearized dynamics of black hole perturbations. Since such

perturbations decay exponentially, it is reasonable to expect that linear black hole perturbation theory can

reasonably well model the ringdown after a time roughly of the size of the QNM decay timescale. This

is in fact what ringdown analyses of gravitational-wave signals usually do. On the other hand, we know

that general relativity is intrinsically nonlinear. This implies that during the initial phase of the ringdown,

right after the peak of the strain, it is important to take nonlinear corrections into account. Second-order

corrections in perturbation theory to the spectrum of QNMs are usually referred to as quadratic QNMs

(QQNMs)—see, e.g., [49, 58–67] and references therein.

From a phenomenological point of view, it is worth noticing that, since the decay rate of the linear QNMs

grows quickly with the overtone number n, there could be quadratic QNMs whose decay rate is slower

than linear overtones. One common example of relevant QQNM is the one with harmonic numbers (ℓ =

4, |m| = 4): this is mainly sourced by the product of two fundamental linear QNMs with (ℓ = 2, |m| = 2),

which turn out to be the dominant modes generated from the merger of nearly equal-mass binary black

holes [49].

The idea is the straightforward generalization of what we discussed in section 2. Instead of expanding

to linear order, we now write the metric as

gµν = ḡµν + εh(1)µν + ε2h(2)µν + . . . (4.48)

where ε is a small bookkeeping parameter which counts the order of perturbation theory—one can think

of it physically also as the small magnitude of linear modes. For simplicity, we will take here ḡµν to be the

Schwarzschild metric in D = 4:

ḡµνdx
µdxν = −f(r)dt2 + f(r)−1dr2 + r2

(
dθ2 + sin2 θ dφ2

)
, (4.49)

with f(r) = 1−rs/r. We now expand the Einstein equations up to second order in ε. We get schematically:

G(1)
µν

[
h(1)

]
= 0 , (4.50)

G(1)
µν

[
h(2)

]
= −G(2)

µν

[
h(1), h(1)

]
, (4.51)

...

where G
(1)
µν [·] denotes the linear variation of the Einstein tensor linear and G

(2)
µν

[
· , ·
]
the quadratic part in

perturbations.

Conceptually, the procedure then mirrors the one followed to derive the Regge–Wheeler and Zerilli

equations:

• one first fixes a convenient gauge (at first and second order) to remove the redundancy associated

with diffeomorphism invariance;
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• one introduces two master scalar variables Ψ
(2)
± —these are the second-order analogs of the Regge–

Wheeler and Zerilli fields—which are functions of the even and odd metric perturbations, and capture

the dynamics of the physical degrees of freedom;

• one solves the equation for each Ψ
(2)
± subject to the usual QNM boundary conditions, which can later

be re-expressed in terms of the metric perturbations in the physical transverse-traceless (TT) gauge,

where the amplitude of the physical gravitational-wave observable at infinity can be computed.

In the end, the equations for Ψ
(2)
± will look like

d2Ψ
(2)
±

dr2⋆
+
(
ω2 − V±

)
Ψ

(2)
± = S

(2)
± , (4.52)

where the left-hand side is identical to the Regge–Wheeler and Zerilli equations, while a source term S
(2)
±

quadratic in the linear perturbations now appears on the right-hand side. As a result, one finds a set of

quadratic QQNMs sourced by the product of two linear modes. The second-order frequencies are fully

fixed from the combination of two first-order frequencies as [49, 66]:

ω(2) = ωℓ1m1n1 + ωℓ2m2n2 , or ω(2) = ωℓ1m1n1 − (ωℓ2m2n2)
∗. (4.53)

This follows because the real metric perturbations at each order can be written as the real part of the

complex field:

h(j)µν = Re
[
hc(j)µν

]
, (4.54)

i.e., eqs. (4.50) and (4.51) can be recast as [49]

G(1)
µν

[
h(1)c

]
= 0 , (4.55)

G(1)
µν

[
h(2)c

]
= −G(2)

µν

[
1

2

(
h(1)c + h(1)∗c

)
, h(1)c

]
. (4.56)

Note that the case of the negative sign in (4.53) can be equivalently thought of as arising from combining

an ordinary linear mode and a mirror mode—a mirror mode has a frequency related to a standard mode

ω by complex conjugation, i.e. −ω∗ [49, 68, 69].

Note also that, since the odd and even linear QNMs are isospectral, and since they can all contribute to

both odd and even sectors at second order, one expects that isospectrality will hold true also for quadratic

modes [49].

The idea is then to derive the inhomogeneous solution to (4.52) (the homogeneous solution is identical

to the solution in the linear problem) and compute the relative amplitude of the second-order modes. One

can proceed using standard Green’s function methods and the approaches mentioned in section 4.3.

Note that, despite the similarity with the linear analysis, there are some interesting differences that are

worth emphasizing:

• first, unlike the case of linear QNMs, whose amplitudes are free parameters that depend on the

initial conditions at the merger, the amplitude of QQNMs is entirely fixed in terms of the black hole

background solution in general relativity and the linear mode amplitudes;
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• as discussed in the literature [58–66], choosing a second-order master scalar that is equivalent to

the first-order one generally causes a divergent behavior at infinity in the solution—although this is

eventually immaterial, it suggests that better field choices may be possible which can improve the

extraction of the subleading ringdown effects (see, e.g., [66] for a discussion).

Recently, evidence of second-order modes has been found in numerical simulations of merging binary

systems—see e.g. [70–77] for some studies on the importance of accounting for second-order effects to

accurately describe the signals obtained from numerical relativity.

As an example, following the notation of [66], let’s call with R the relative ratio of the QNM amplitudes

for the physical TT-gauge gravitational fields at large distances, i.e.,

R ≡
A(2)
ℓmN

A(1)
ℓ1m1N1

A(1)
ℓ2m2N2

, |ℓ1 − ℓ2| ≤ ℓ ≤ ℓ1 + ℓ2, (4.57)

where N ≡ (n,m) is composed of the overtone number n and the mirror modes m = ±. Ref. [66] finds

for instance that R ≃ 0.154 e−0.068i for (220+) × (220+) → (44), which turns out to be the most excited

nonlinear mode in numerical relativity simulations, see e.g. [70–74, 76].
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5 Effective field theory approach to black hole dynamics

Let us remind ourselves the sketch of the merger of two compact objects (see figure 1) [78]. Let’s call r the

orbit separation and R the typical size of the binary constituents. In the early inspiral phase, i.e. when the

orbit separation is large compared to the typical size of the objects (r ≫ R), the evolution of the system

is slow and admits a systematic expansion in powers of R/r. The inspiral proceeds adiabatically following

non-relativistic orbits. For black holes, which have R ∼ rs, using virial theorem of Newtonian gravity, one

finds typical relative velocities of order

v2 ∼ GM

r
∼ rs

r
≪ 1. (5.1)

This is the key factor behind the post-Newtonian (PN) expansion [79, 80]: the Einstein equations of the

compact binary admit a systematic solution as an expansion order-by-order in the relative velocity v ≪ 1.

The PN limit of binary dynamics has a natural formulation in the language of effective field theories [81]

(see also [78, 82–87] for some reviews). In addition to the typical size R ≳ O(1)rs of the objects in the

binary, and the distance separation r between them, there is another scale in the problem: the wavelength

λ of the emitted radiation, which we can roughly take to be of order of the inverse of the orbital frequency,

λ ∼ r

v
. (5.2)

The EFT takes essentially advantage of the hierarchy between the widely separated length scales in the

problem:

rs ≲ R ≪ r ∼ rs
v2

≪ λ ∼ r

v
. (5.3)

Note that the three scales in the problem (R, r and λ) are correlated i.e., their relative ratios are given

by powers of the same expansion parameter v. To disentangle the physical effects entering at the three

different scales R, r and λ (i.e., at different orders in v), one can construct a ‘tower’ of EFTs of gravity

[78, 86]: at the first stage, one constructs a one-body EFT to remove the scale R of the single (isolated)

compact object; at the next stage, one integrates out the orbital scale of the two-body system and obtains

an EFT for a composite particle; finally, one integrates out the radiation scale and obtains an effective

theory of dynamical multipole moments, to describe effects that involve the radiation directly.

Before reviewing the construction of the EFT for binary systems, it is convenient to remind some aspects

of effective field theories in general.

5.1 Some general considerations on effective field theories

Interesting phenomena happen at all energy scales. The existence of large separations of length scales

between such phenomena is a fact in physics. This means that, in order to describe the physical properties of

a system at a certain energy scale E, we do not need to know what happens at scales that are parametrically

different. In other words, we can effectively “decouple” the physics at widely separated energy scales.

A direct consequence of this fact is our ability to describe phenomena in terms of a finite number of

parameters, which is what ultimately determines the predictive power of our description. All these aspects

are formalized within the framework of Effective Field Theories (EFTs).
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Operationally, the decoupling of phenomena at separated scales is obtained by integrating out UV physics.

Concretely, if one is given a fundamental theory involving heavy fields Φ(x) and light fields ϕ(x), which is

described by an action S[Φ, ϕ], the low-energy effective action SEFT[ϕ], for the light fields only, is formally

defined, within the path-integral formulation of quantum field theory, as

eiSEFT[ϕ] ≡
∫

DΦ eiS[Φ,ϕ] . (5.4)

Decoupling is ultimately the statement that the resulting effective action SEFT[ϕ] is local in the light fields

ϕ at energies that are much smaller than those at which the heavy fields Φ enter:

SEFT =

∫
dDx

∑
i

ci
Oi[ϕ(x)]

Λ∆i−D
, (5.5)

where Λ is some UV energy scale, associated with the Φ fields, ci are constant coefficients and ∆i are the

dimensions of Oi, which are local functions of ϕ.

The definition (5.4) is concrete and predictive: one can, in particular, compute correlation functions of

the light fields by performing a path integral over them, weighted by the exponential of the effective action,

i.e.,

⟨ϕ(x1) . . . ϕ(xn)⟩ =

∫
DϕDΦ eiS[Φ,ϕ] ϕ(x1) · · ·ϕ(xn)∫

DϕDΦ eiS[Φ,ϕ]
=

∫
Dϕ eiSEFT[ϕ] ϕ(x1) · · ·ϕ(xn)∫

Dϕ eiSEFT[ϕ ]
. (5.6)

At this level, to be precise, there is formally no energy expansion in (5.6): eq. (5.6) is identically true,

provided that one uses the effective action for ϕ to compute correlation functions of ϕ only, but not of

Φ. In other words, as long as one is only interested in correlation functions of ϕ, one can perform the

path-integral over Φ once and for all, which is what eq. (5.6) does.

The point is that, from a bottom-up perspective, we often do not know what the physics of the heavy

fields Φ is. That is where the power of EFTs resides: one uses the expansion (5.5), truncated at some finite

order, as the starting point to describe the dynamics of ϕ. Information about the unknown UV physics

is encoded in the Wilson couplings ci, which are in general unknown: they can either be constrained

experimentally, or by explicit matching with some UV theory. Consistency and predictivity of the theory

rely on the fact that, up at some energy and precision, only a limited number of terms in the expansion

(5.5) is required to have a sufficiently accurate description of the dynamics of ϕ.

To summarize, by taking advantage of this separation of scales, EFTs are defined by an effective La-

grangian, which is completely specified by the following building blocks (see [88–93] for some reviews on

EFTs).

• Degrees of freedom: As first step, one identifies the low-energy degrees of freedom that will enter the

effective action.

• Symmetries: One then specifies the symmetries, which constrain the form of the allowed operators

in the effective action, and which are functions of the low-energy degrees of freedom. They can be of

any type, such as global, gauged, exact, accidental, approximate, spontaneously broken, anomalous,

etc.
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• Expansion parameters and power counting rules. Once the low-energy degrees of freedom and sym-

metries are identified, one organizes the effective Lagrangian in powers of some expansion parameters.

These take in general the form of ratios between the energy E and some Λ, the typical energy scale

at which the neglected UV physics enters. The size of the higher dimensional operators that appear

in the EFT is then dictated by power counting rules.

Given these ingredients, then the recipe simply consists in writing down a general Lagrangian of the form

(5.5), containing all possible operators, which are built up with the low-energy degrees of freedom and

are compatible with the given set of symmetries, organized in a derivative expansion. The operators Oi

are local functions of the low-energy fields, and ci are the IR Wilson couplings. The description (5.5) is

completely general and model independent.

If a UV theory is known, given the EFT (5.5) truncated to the desired order in the derivative expansion,

one can determine the IR Wilson couplings ci by computing as many low-energy observables as needed, and

by matching them to the same observables computed in the full theory. Possible non-analytic contributions

in the calculation of the observables in the EFT (5.5), e.g. in the form of logarithms log(Λ/E), can be

understood in the EFT as the renormalization group (RG) evolution of the Wilson couplings from the

matching scale Λ to the IR at a scale. Such non-analytic contributions are universal, i.e. independent of

the detailed microscopic physics.

5.2 Effective field theory description of compact sources

The logic summarized above naturally applies to black hole dynamics and binary systems.

In the following, we will focus on the construction of the EFT of isolated compact objects [78, 81–87, 94].16

The compact object is treated as a dynamical point-like defects (worldline) which carries internal degrees

of freedom coupled to gravity. The idea is that, far from the compact object, i.e. at distances much greater

than its radius (r ≫ R), the object is seen, in first approximation, as a point particle. The EFT will be

able to efficiently describe finite-size effects originating from the internal structure of the orbiting compact

object, such as tidal deformations induced by external gravitational fields, or dissipation of energy across

the black hole horizon. After integrating out the internal structure of the object, at distance scales larger

than the typical radius R, such effects are encoded in the Wilson coefficients of local worldline operators,

suppressed by powers of R/r. In this construction, the two-body problem can be seen as the theory of

gravitons coupled to the compact object worldlines [78, 87].

According to the general considerations above, in order to write the EFT of an isolated compact object,

we first have to identify the relevant low-energy degrees of freedom. For simplicity, we will assume that the

internal dynamics is gapped at distance scales R ≪ r, i.e. that the only light degrees of freedom are the

Goldstone modes associated with the spontaneous breaking of local Poincaré symmetries by the presence

of the compact object. Thus, up to gauge redundancy, in the point-particle limit the system is described

by:

• the gravitational field gµν ;

16See also [10, 95–99].
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• the compact object’s worldline xµ(τ), which is a function of the affine parameter τ ;

• a spin degree of freedom si localized on the worldline.

In the following, we will denote the particle’s four-velocity as

vµ =
dxµ

dτ
≡ ẋµ. (5.7)

(Here and in the following, we often denote derivatives with respect to the affine parameter τ with an

overdot.) To remain as general as possible, we will again work in generic spacetime dimensions. Results

in four dimensions can be obtained by simply setting D = 4 in the expressions below. We will sometimes

introduce the notation

d ≡ D − 1, (5.8)

for the number of spatial dimensions.

The dynamics then follows from a worldline action that couples xµ(τ) and the spin si to the gravitational

field gµν . To construct the operators in the EFT using the ingredients above, and to describe the coupling

between the worldline and external fields, it is convenient to introduce an orthonormal frame [78, 85–

87, 96, 100, 101]

eµa(τ), a = 0, 1, 2, . . . , d, (5.9)

where a denotes SO(d, 1) local Lorentz indices. The vielbein eµa satisfies

gµνe
µ
ae
ν
b = ηab , ηabe

a
µe
b
ν = gµν , (5.10)

i.e., eµaeaν = δµν and eµaebµ = δba. The local frame eµa is necessary to describe objects with non-zero spin.

In the absence of gravity, the formalism was first introduced by Regge and Hanson [100], to treat the

classical motion of relativistic spinning particles coupled to electromagnetic fields. The extension of the

Regge–Hanson formalism to curved spacetime, and its applications to perturbative binary dynamics first

appeared in [96].17

The rotation of the particle relative to fixed inertial frame is encoded in

Ωab = gµνeaµ
D

Dτ
ebν ,

D

Dτ
eaµ = ẋρ∇ρe

a
µ = ėaµ − Γρσµẋ

σeaρ , (5.11)

which corresponds to the rotation of the vielbein along the worldline’s trajectory. Ωab represents the

angular velocity of the particle, and is an antisymmetric matrix,

Ωab = −Ωba. (5.12)

Following the logic of section 5.1, as a next step we shall identify the set of symmetries that will determine

the form of the operators allowed in the EFT.

The compact object spontaneously breaks Poincaré symmetries, which are nonlinearly realized on the

worldline degrees of freedom {xµ, eµa}. The symmetries that we will require in the action are those associated

with gauge redundancy in the variables {gµν , xµ(τ), eµa(τ)}, i.e.,
17A modern treatment of spinning particles from the point of view of nonlinearly realized symmetries can be found in [98].
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• general coordinate invariance:

xµ → x̃µ , gµν(x) → g̃µν(x̃) =
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ(x(x̃)) , eaµ → ẽaµ =

∂xα

∂x̃µ
eaα ; (5.13)

• internal Lorentz invariance of the local frame field:

eaµ(τ) → ẽaµ(τ) = Λabe
b
µ(τ) , (5.14)

where Λab is a constant Lorentz matrix.

• reparametrization invariance (RPI) of the worldline:

τ → τ̃(τ) . (5.15)

Because of the second point above, the definition of the tetrad is unique up to a local Lorentz transforma-

tion: we can transform the local ‘a’ index by a local Lorentz transformation, i.e. ẽaµ = Λabe
b
µ, and end up

with the same metric gµν :

g̃µν = ηabẽ
a
µẽ
b
ν = ηabΛ

a
cΛ

b
de
c
µe
d
ν = ηcde

c
µe
d
ν = gµν , (5.16)

where we used (5.10).

To enforce RPI, it will be convenient to define also an einbein e(τ), such that

ẽ(τ̃)dτ̃ = e(τ)dτ. (5.17)

Concretely, under an infinitesimal shift of the affine parameter,

δτ = ξ, (5.18)

the einbein, the worldline and the vielbein transform as

δe = ∂τ (ξe) , δxµ = ξẋµ , δeaµ = ξėaµ . (5.19)

Worldline effective action. Having specified the degrees of freedom and the symmetries, we shall next

proceed by writing down the most general RPI action.

Point-particle action of non-rotating bodies. As a warm-up, let us consider the case of a non-spinning

object. From far away, the object appears, in first approximation, as a point particle. At lowest order,

the action describing the dynamics of a point particle is the Nambu–Goto action on the worldline:

Spp = −m
∫

ds = −m
∫

dτ

√
−gµν

dxµ

dτ

dxν

dτ
, (5.20)

where s denotes here the proper time along the worldline, and is related to the affine parameter τ via

ds = medτ . (5.21)
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In terms of the einbein, we can in fact equivalently rewrite the Nambu–Goto action in the Polyakov

form as

Spp =
1

2

∫
dτe

(
e−2dx

µ

dτ

dxν

dτ
gµν −m2

)
. (5.22)

Integrating out the einbein from (5.22), using its equation of motion,

e =
1

m

√
−gµν

dxµ

dτ

dxν

dτ
, (5.23)

one correctly recovers the Nambu–Goto action (5.20). Note that extremizing Spp gives the usual

geodesic motion of a test particle in a gravitational field:

0 = δ

[
m

∫
ds

]
= δ

[
m

∫ √
−gµνdxµdxν

]
= −m

∫
ds

[
gµν

dxµ

ds

d

ds
+

1

2
(∂νgρσ)

dxρ

ds

dxσ

ds

]
δxν (5.24)

⇒ aµ ≡ d2xµ

ds2
+ Γµρσ

dxρ

ds

dxσ

ds
=

dxρ

ds
∇ρ

dxµ

ds
= 0. (5.25)

Including the spin degree of freedom, to leading order in a derivative expansion in powers of R/r, the
point-particle action can be written as

Spp =

∫
dτ

[
vµpae

a
µ +

1

2
SabΩab −

1

2
e
(
pap

a +m2(p, S)
)
+ eλaS

abpb

]
, (5.26)

where the momentum pa and the spin Sab,

pµ ≡ δSpp
δẋµ

, Sab ≡ 2
δSpp
δΩab

, (5.27)

are conjugate variables to the particle’s velocity ẋµ and angular momentum Ωab, with

pµ = eaµpa, Sµν = eaµe
b
νSab. (5.28)

(In this construction we are following [101], however there is a different way of proceeding based on the

Routhian formalism [102].)

In the formulation (5.26), the quantity m2 is in principle an arbitrary function of all possible scalars

constructed out of pa, Sab and gµν . The form of this function is not predicted by the point-particle EFT,

but it is rather fixed through a matching procedure to the UV theory of the extended object. Note that

m2(p, S) fixes the Regge trajectory [100] of the spinning particle, i.e. the relation between the invariant

mass p2 and the spin, which follows from the variation of Spp with respect to e(τ).

Moreover, the last term in (5.26), involving the Langrange multiplier λa, is necessary to enforce a

supplementary constraint on Sab. In particular,

Sabpb = 0 (“spin-supplementary condition”). (5.29)
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Recall that information about the particle’s angular momentum is encoded in the angular velocity matrix

Ωab, which is antisymmetric. Therefore, it has in principle D(D−1)/2 independent components. However,

the angular momentum of classical objects belongs to the adjoint representation of the spatial rotation

group SO(D−1), whose dimension is (D−1)(D−2)/2 independent components. The spin-supplementary

condition is thus necessary to reduce the number of independent components of Ωab from D(D−1)/2 down

to (D − 1)(D − 2)/2:

D(D − 1)

2
− (D − 1) =

(D − 1)(D − 2)

2
, (5.30)

as required by Poincaré symmetries for a physical spin degree of freedom.

It will be convenient later on to project onto the subspace orthogonal to the particle’s motion—in the

rest frame of the particle, this means projecting onto the spatial coordinates. The covariant form of such

a projector is

Pµν ≡ δµν + uµuν , (5.31)

where we defined the four-velocity with respect to the proper time:

uµ ≡ dxµ

ds
=

vµ√
−vλvλ

, uµuµ = −1. (5.32)

(To be pedantic, we introduced uµ to stress that the four-velocity with respect to the proper time differs

from vµ by a normalization factor—this difference is however immaterial in Minkowski space where the

two four-vectors coincide.) In the particle’s rest frame,

ua = eaµu
µ = (1, 0⃗) . (5.33)

Analogously, we can introduce the projector

P ba = δba + uau
b. (5.34)

The vielbein eaµ will be useful to convert spacetime indices into rest-frame indices, while we will use P ba to

project onto spatial indices.

Bulk theory. We want eventually to couple the worldline to external fields. Therefore, we need to

specify their bulk dynamics. In the case of gravitational interactions, this is simply the Einstein–Hilbert

action:

Sbulk =
MD−2

Pl

2

∫
dDx

√
−gR , (5.35)

where we have defined MD−2
Pl = 1/(8πG). To get an intuition of the physics, we will sometimes refer below

to a simpler toy model. This consists in a massless scalar field minimally coupled to gravity. Its bulk

action is

Sϕ =

∫
dDx

√
−g
(
−1

2
(∂ϕ)2

)
. (5.36)
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ADM mass and metric reconstruction. Recall that, from the point of view of the low-energy theory,

the Wilson coefficients in Spp are free parameters. They are either determined experimentally if the UV

theory is unknown (as discussed above, the EFT has predictive power, because spacetime and worldline

derivatives are small—we can truncate the expansion at the desired order, given a certain level of precision),

or they are determined by matching to some microscopic theory. In the following, we will extend the EFT

to higher orders in derivatives. However, before getting there, it is instructive to see, as an explicit example,

how the matching works for the parameter m in full general relativity. For simplicity, we will focus on the

case of non-rotating objects and set the spin to zero.

Figure 4: Point-particle gravitational potential at linear order in the number of worldline mass insertions. The

vertical line represents the worldline.

The idea is to compute the diagram in figure 4 and compare it with the gravitational potential of a

compact source in general relativity. From a path integral perspective, we shall compute the one-point

function

⟨hµν(x)⟩ ∼
∫

Dhhµν(x) ei(Sbulk+Spp+SGF) , (5.37)

where hµν is defined via

gµν = ḡµν + κhµν , κ ≡ 2M
1−D

2
Pl , (5.38)

where and SGF is a gauge-fixing term from the Faddev–Popov procedure. We will work in the background

de Donder gauge defined as follows [85]

SGF = −
∫

d4x
√
−ḡḡµν

[
ḡαβ∇̄αhβµ −

ḡαβ

2
∇̄µhαβ

] [
ḡρσ∇̄ρhσν −

ḡρσ

2
∇̄νhρσ

]
. (5.39)

In this section, we will take ḡµν = ηµν , although the procedure is general and holds for any background

ḡµν . On Minkowski background, the de Donder gauge is defined by the condition

∂µ
(
hµν −

1

2
ηµνh

)
= 0, h ≡ hµµ. (5.40)

We will compute all connected Feynman diagrams with one external hµν(x)—we shall ignore diagrams

containing closed gravitons loop, which do not contribute in the classical limit [81]. The Feynman rules

that we need are summarized in figure 5, where

GdD
µνρσ(p

2) =
i

p2
Pµνρσ = −1

2

(
ηµρηνσ + ηµσηνρ −

2

D − 2
ηµνηρσ

)
i

p2
(5.41)

is the graviton propagator.
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Figure 5: Feynman rules for the calculation of the diagram in figure 4.

At leading order, we have the direct coupling to the point-particle, which sources hµν . The diagram in

figure 4 can be calculated as follows:

⟨hµν(x)⟩ = −κm
2

∫
dτ ẋρẋσ

∫
dDk

(2π)D
e−ik·(x(τ)−x)

k2
Pρσµν (5.42)

=
κm

2

(
ẋµẋν +

1

D − 2
ηµν

)∫
ddk⃗

(2π)d
eik⃗·x⃗

k⃗2
. (5.43)

Using the formula ∫
ddk⃗

(2π)d
eik⃗·x⃗

k⃗2
=

Γ(d2 − 1)

(4π)d/2

(
x⃗2

4

)1− d
2

, (5.44)

with r =
√
x⃗2, we get

⟨hµν(x)⟩ =
κm

4(D − 2)(D − 3)rD−3

Γ(D−1
2 )

π(D−1)/2
(ηµν + (D − 2)ẋµẋν)

=
κ

2(D − 3)rD−3

rD−3
s

16πG
(ηµν + (D − 2)ẋµẋν) ,

(5.45)

which reproduces the Schwarzschild-Tangherlini metric in isotropic coordinates [103, 104] up to the first

non-trivial order in G [105–108] (see [109] for an all-orders reconstruction of the Schwarzschild metric in

four dimensions),

ds2 =
(
ηµν + κ⟨hµν(x)⟩

)
dxµdxν = −

(
1−

(rs
r

)D−3
)
dt2 +

(
1 +

1

D − 3

(rs
r

)D−3
)
dx⃗2 + . . . , (5.46)

provided one identifies the parameter m with the ADM mass M i.e., in D = 4,

2Gm = 2GM ≡ rs. (5.47)

We stress that, for the identification m =M , it is important that the comparison between the IR solution

and the full metric linearized in rs (eq. (5.46)) is done in the same gauge. Alternatively, one can obtain

the same result by comparing gauge-invariant quantities in the UV and in the IR.
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ADM mass from leading-order worldline equations. Note that the same result at linear order in rs

can be obtained directly from the Einstein equations. The variation of SEFT = Spp + Sbulk yields, in

D = 4, and in the rest frame of the point particle,

M2
PlGµν [h] = −mδ0µδ

0
ν δ

(3)(x⃗), (5.48)

where the linearized Einstein tensor is

Gµν [h] = −κ
2
[∂ρ∂µhνρ + ∂ρ∂νhµρ −□hµν − ∂µ∂νh− (∂ρ∂σhρσ −□h) ηµν ] . (5.49)

We would like to find the static and spherically-symmetric solutions of (5.48). In the de Donder gauge

(5.40), which implies ∂ρ∂σhρσ = 1
2□h,

Gµν [h] =
κ

2

(
□hµν −

1

2
ηµν□h

)
. (5.50)

Taking the trace of (5.48) with ηµν , and using (5.50), one finds that κM2
Pl□h = −2mδ(3)(x⃗). Plugging

it back into (5.48), one finds the following equation for hµν :

κ ∇⃗2hµν = − m

M2
Pl

(
2δ0µδ

0
ν + ηµν

)
δ(3)(x⃗), (5.51)

where we replaced the d’Alambert operator with the spatial laplacian for time-independent pertur-

bations. Integrating over a sphere of radius r, and using the divergence theorem and the spherical

symmetry, one finds the following equation in r: 4πκ r2∂rhµν = − m
M2

Pl

(
2δ0µδ

0
ν + ηµν

)
. Dividing by r

and integrating in
∫
dr yields

κhµν =
2Gm

r

(
2δ0µδ

0
ν + ηµν

)
, (5.52)

in agreement with (5.46), provided that the point-particle mass is identified with the ADM mass M of

the compact object in isolation.

The matching condition (5.47) can receive corrections on the EFT side in powers of G. One example of

correction is, for instance, the self-energy of the static field sourced by the worldline. In the EFT, this type

of effects is associated with short-distance singularities, and depends on the regularization scheme. Any

discrepancy between the UV behavior of the EFT and the full theory can be compensated by renormalizing

the Wilson coefficients by adding local counterterms in Spp.

Because the leading-order term in Spp is universal, as argued above, to capture the object’s finite size and

resolve its internal structure we need to keep the higher-derivative terms in the worldline action. The goal

is now to find a set of linearly independent operators that respect the defining symmetries of the problem,

and enter at the next order in derivatives. To construct the full set of invariants, as in any EFT, we can

take advantage of the worldline equations of motion at previous order to eliminate redundant terms [110].

For example, the leading-order worldline equations of motion (5.24) imply that aµ = 0 (see eq. (5.25)), so

that terms involving the acceleration aµ can be removed. Similarly, as a consequence of the leading-order
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Einstein equations, we can drop operators constructed out of the Ricci curvature tensor [78], i.e.,∫
dτ R(x(τ)),

∫
dτ Rµν(x(τ))u

µuν . (5.53)

Linear-order redundant operators. To see explicitly how (5.53) can be removed, let’s consider a non-

rotating body as an example. The point-particle action is (5.20). Using the leading-order Einstein

equations, we can express Rµν as a contact term localized on the particle’s worldline,

Rµν = − m

MD−2
Pl

∫
ds
δ(D)(x− x(s))√

−g

(
uµuν +

gµν
D − 2

)
, (5.54)

which means that the operators (5.53) can be completely reabsorbed into the definition of the effective

parameter m. To be precise, let’s perform a field redefinition of the form

gµν → g̃µν = gµν + δgµν , δgµν ≡ 1

MD−2
Pl

∫
ds
δ(D)(x− x(s))√

−g

(
c̃ gµν + d̃ uµuν

)
, (5.55)

with constant c̃ and d̃. The bulk action (5.35) changes as follows:

δSbulk =
MD−2

Pl

2

∫
dDx

√
−g Gµνδgµν =

1

4

∫
ds
[
(c̃(2−D) + d̃)R+ 2d̃ Rµνu

µuν
]
. (5.56)

We can thus choose c̃ and d̃ in such a way to remove the operators (5.53).

Gravitational multipole moments. As a result, the first non-redundant terms that we can add to the

worldline at the next order are constructed out of the Riemann tensor, or equivalently the Weyl tensor (see

eq. (2.80) for the definition). At linear order in the fields, such operators capture the permanent multipole

moments of the object. In full generality, in D spacetime dimension, we can write

Smultipoles =
∑
L

1

L!

∫
dτ

[
λi1···iL(L,CE)

∂(i1 · · · ∂iL−2EiL−1iL)T + λi1···iL j(L,CB)∂(i1 · · · ∂iL−2BiL−1iL)T j

+ λi1···iL j1j2(L,C) ∂(i1 · · · ∂iL−2CiL−1iL)T j1j2

]
,

(5.57)

where we have split the components of the Weyl tensor as

Eij ≡ C0i0j , Bijk ≡ C0ijk , Cijkl . (5.58)

Note that the splitting has been done directly into temporal and spatial components in the rest frame

of the object. However, one can equivalently define the operators in (5.57) covariantly by means of the

projectors Pµν ≡ δµν + uµuν , defined in eq. (5.31). For instance,

λµν(2,CE)Eµν = λµν(2,CE)Cµρνσu
ρuσ. (5.59)
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Recall that the Weyl tensor has the same symmetries as the Riemann tensor, but in addition it is trace-

free, i.e. Cρµρν = 0. This implies that the number of independent components of the Weyl tensor in D

spacetime dimensions is

D2(D2 − 1)

12
− D(D + 1)

2
=
D(D + 1)

2

[
D(D − 1)

6
− 1

]
. (5.60)

For instance, in D = 4 the Riemann tensor has 20 independent components, 10 of which are contained in

the Weyl tensor. Moreover, the counting above vanishes for D = 3, implying that Cikjl is not independent

from C0i0j and C0ijk; in other words, in D = 4 the EFT (5.57) contains only Eµν and Bµνρ.

There is a completely analogous story for scalar and vector fields. In those cases, we shall write

Sscalar
multipoles =

∫
dτ

[
gϕ+

∑
L

1

L!
λi1···iL(L) ∂(i1 · · · ∂iL)ϕ

]
, (5.61)

SEM
multipoles =

∫
dτ

[
eAµv

µ +
∑
L

1

L!
λi1···iL(L,E)∂(i1 · · · ∂iL−1EiL)T +

∑
L

1

L!
λi1···iL j(L,B) ∂(i1 · · · ∂iL−2BiL)T j

]
, (5.62)

where ϕ is a scalar field, and Ei and Bij are the electric and magnetic fields defined as

Ei ≡ F0i, Bij ≡ Fij . (5.63)

The coupling gϕ represents the object’s monopole scalar charge, while evµAµ captures the electric charge

of the particle.

In (5.57), the coefficients λ are generic tensors. They can be expressed as functions of the building blocks

in the theory (5.26). Naively, there could be an infinite number of combinations of the building blocks,

but, at given order in the derivative expansion, only a finite number of them are expected to be linearly

independent. For a rotating objects in D = 4, one can show that the point-particle action (5.57), at linear

order in the metric perturbation hµν , can be rearranged, up to irrelevant boundary terms, as [86, 111]

Smultipoles ⊃ −κm
2

∞∑
n=0

[
λ̃(n,CE)

(2n)!

(
−(aµ∂µ)

2
)n
uµuν −

λ̃(n,CB)

(2n+ 1)!

(
−(aµ∂µ)

2
)n
u(µϵν)αβγu

αaβ∂γ

]
hµν +O(h2)

(5.64)

where aµ is related to Sµν via

Sµν ≡ ϵµναβu
αaβ, (5.65)

and where we have suitably redefined the coefficients, λ 7→ λ̃, for practical convenience.

The couplings λ (or, λ̃) capture the gravitational multipole moments of the compact object. Matching

(5.64) with the metric of a Kerr black hole in general relativity (in D = 4), one finds that λ̃n are all unity

[111] (see also [112–114]).

Finite-size corrections: conservative effects. We now move on to consider operators in the EFT

that are quadratic in the fields and capture effects associated to the finite size of the object. These can

be distinguished into two types: conservative and dissipative. Let us start by considering operators that
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describe conservative effects of the object in the worldline EFT. Later on, we will show how to modify the

worldline EFT to include also dissipation in the most general case.

Conservative finite-size effects in the EFT are modeled by local operators on the worldline. Let us start

from a simple example in D = 4 with zero spin. Since operators involving the Ricci tensor and Ricci scalar

can be removed via a field redefinition (see above), the only nontrivial ingredients that we can add are

{Cµνρσ, gµν , εµνρσ, uµ}. Using the algebraic properties of the Weyl tensor in D = 4 spacetime dimensions,

the independent operators that enter at second order in the number of fields and at leading order in

derivatives are

CµανβCσ
α
ρ
βuµuνuρuσ, CµαβγCν

αβγuµuν , Cλ
µ
τ
νεµραβC

αβ
νσu

λuτuρuσ, (5.66)

with two and four u’s. The operators (5.66) are the covariant version of

EijE
ij , BijkB

ijk, EijεiklBj
kl. (5.67)

The third operator in eq. (5.66) (or, eq. (5.67)) couples the electric and magnetic components of the Weyl

tensor. Such coupling breaks parity/time reversal [78, 115] and is absent in general relativity. Assuming

that the underlying full theory respects parity, the first quadratic operators that we can add to the worldline

EFT are, to leading order in derivatives,

Sint ⊃
∫

dτ
(
λ
(CE)
2 EijE

ij + λ
(CB)
2 BijkB

ijk
)
. (5.68)

The couplings λ
(CE)
2 and λ

(CB)
2 are commonly called Love numbers and capture the leading-order (quadrupo-

lar) deformability of a compact object [116, 117].18 By dimensional analysis, they are expected to scale,

for L = 2, as [87]:19

λ
(CE,B)
2 ∼ R5

G
. (5.69)

This implies that tidal corrections in a non-relativistic calculation of the orbital dynamics of a compact

binary with radius r ≫ rs do not enter until at least the relative order(
R
r

)5

∼
(
R
rs

)5(Gm
r

)5

∼
(
R
rs

)5

v10. (5.70)

This means that non-dissipative finite-size effects start affecting the non-relativistic limit of a two-body

inspiral from 5PN order.20 This aspect contributes to the motivation for performing PN calculations to at

least 5PN order where such tidal effects start to appear.

Note that tidal deformation effects can however be more pronounced for less compact objects than black

holes, due to an enhanced factor R/(Gm). For instance, for neutron stars R/(Gm) ≳ O(10) [118], and the

ratio can be larger for exotic compact objects [119].

18The terminology ‘Love numbers’ refers to the name of the physicist A. E. H. Love, who studied the effects produced by

tidal forces on gravitating bodies [116].
19Compare (5.68), i.e. schematically ∼ λ2

∫
dτ(∂2h)2, with the point-particle action m

∫
dτh, where h is the gravitational

potential ∼ Gm
r

. Thus, λ2 ∼ R5/G, where R−1 represents the cutoff of the EFT. The same comparison yields the R5/r5

scaling in (5.70).
20Recall that order v2n corresponds to nPN order.
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Geodesic deviation. The operators (5.68) are the first ones of an infinite series. One way to see that

they correspond to the finite size of the object is to calculate their effect on the motion of a particle

moving in a background field. The variation of the point-particle action Spp now includes contributions

from the quadratic terms in the curvature:

δ

[
m

∫
ds

]
= δ

[∫
dτ
(
λ
(CE)
2 EijE

ij + λ
(CB)
2 BijkB

ijk
)]

⇒ aµ ̸= 0, (5.71)

in other words, the particle no longer moves on a geodesic—this should be contrasted with (5.25).

This is precisely what happens in gravity when one considers the motion of extended objects in a

gravitational field, where geodesic deviation is associated with stretching by tidal forces.

The generalization of (5.68) to arbitrary D-dimensions and higher orders in (spatial) derivatives, for

non-rotating objects, is [10, 115]

Sint ⊃
∞∑
L=1

1

2L!

∫
dτ

[
λ
(CE)
L

(
∂(a1 · · · ∂aL−2EaL−1aL)T

)2
+
λ
(CB)
L

2

(
∂(a1 · · · ∂aL−2BaL−1aL)T b

)2
+
λ
(T )
L

4

(
∂(a1 · · · ∂aL−2CaL−1aL)T bc

)2 ]
.

(5.72)

The action (5.72) captures the object’s conservative finite-size effects to all orders in the gradients of the

gravitational field and zeroth order in the frequency (static limit). Going beyond the static approximation

is straightforward: there is an analogous expansion in the number of time derivatives that captures the

dynamical response of the object in the adiabatic approximation. For example, at the next-to-leading order

in the derivative expansion and quadratic order in the number of fields, we can write

Sint ⊃ λ
(Ė)
2

∫
dτ uρuσ∇ρEµν∇σE

µν = λ
(Ė)
2

∫
dτ ĖijĖ

ij , (5.73)

where in the last equality we went to the rest frame of the point particle. The Wilson coupling λ
(Ė)
2 is

the electric-type dynamical Love number (one can write a similar expression for the magnetic part with

coefficient λ
(Ḃ)
2 ), which describes the parity-even leading-order frequency-dependent conservative response.

We will come back to the dynamical Love numbers below, when we will write down the most general

finite-size effective action including dissipation and spin.

So far, the coefficients λ
(CE)
2 and λ

(CB)
2 are generic. Explicit expressions in terms of the microscopic

properties of the compact object can be obtained by matching the EFT with a full general-relativity

calculation. The most convenient way of proceeding is to match gauge-invariant observables. One example

is the quantum mechanical probability amplitude for elastic graviton scattering off the compact object

[78, 120, 121]. In this case, one can compute the amplitude in the full theory, by linearizing the Einstein

equations around some background field ḡµν sourced by the compact object, satisfying the asymptotic
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boundary conditions

hµν(x) → ϵµν e
−ik·x+

Aµν

r
e−iω(t−r), (5.74)

where ϵµν is the polarization of the incoming wave and ω is the frequency of the outgoing wave. The scat-

tering amplitude is given by the matrix Aµν which is gauge invariant, and can be compared with a similar

calculation in the EFT. This is of course not the only way of determining the Love number coefficients.

Another possibility is to compute the response induced by an external long-wavelength gravitational source.

We will come back to this in section 6, where we will perform the calculation of the static response of a

compact object in full general relativity and, by performing the matching with the EFT, we will be able

to determine the Love number coefficients as functions of the microscopic properties of the object.

Finite-size corrections: including dissipation. In the previous discussion, we have derived an effec-

tive theory for the dynamics of an isolated compact object. The EFT is schematically of the form

SEFT = Spp + Sbulk + Smultipoles + Sint, (5.75)

where Spp is the point-particle action in eq. (5.26), Sbulk describes the dynamics of fields in the bulk

(eq. (5.35)), Smultipoles in (5.57) captures the multipolar structure of the object, while Sint contains terms

of the form (5.72) that encode information about finite size and tidal response. The ingredients above are all

that is required to describe the conservative dynamics, but cannot capture dissipative effects. Such effects

are expected to play a relevant role in physical situations: some examples are absorption of gravitational

energy by the horizons of black holes, or dissipative tidal deformations of neutron stars due to their internal

dynamics.

The way to account for dissipation consists in including a set of internal worldline degrees of freedom.

In the following, we will label them as X(τ). They can effectively absorb energy from external fields and

provide a modeling for dissipation in the point particle. The dynamics of the composite object then follows

from the action [95, 101]

Spp =

∫
dτ

(
vµpa(X)eaµ +

1

2
Sab(X)Ωab −

1

2
e
(
pap

a − LX(X, e
−1Ẋ)

)
+ eλaS

ab(X)pb(X)

)
, (5.76)

where we promoted the ingredients in (5.26) to be functions of the additional degrees of freedom X. The

internal dynamics is encoded is some Lagrangian LX whose form will not be needed. The momentum

pa(X) and the spin Sab(X) account for the excitation of the internal degrees of freedom X, and are thus

now interpreted as composite operators [101].

To see how the internal degrees of freedom X affect the dynamics of the system, we will integrate them

out and obtain an effective action for the kinematic variables {xµ, eaµ}. Since we want to capture dissipative

effects, we have to use the in-in formalism. The Schwinger–Keldysh effective action Γin-in is defined through

eiΓ
in-in(xI ,(eI)

a
µ,eI) =

∫
DX1DX2 eiS[X1,x1,(e1)aµ,e1]−iS[X2,x2,(e2)aµ,e2] , (5.77)
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where I = 1, 2. The path integral (5.77) is over two copies of the fields. By construction:

Γin-in(xI , (eI)
a
µ, eI)

∣∣∣
x1=x2,(e1)aµ=(e2)aµ,e1=e2

= 0. (5.78)

The variation with respect to {xµ, eaµ} and the einbein e determines the classical equations of motion of

the point particle:

δ

δxµ(τ)
Γin-in(xI , (eI)

a
µ, eI)

∣∣∣
x1=x2,(e1)aµ=(e2)aµ,e1=e2

= 0, (5.79)

δ

δeaµ(τ)
Γin-in(xI , (eI)

a
µ, eI)

∣∣∣
x1=x2,(e1)aµ=(e2)aµ,e1=e2

= 0. (5.80)

Defining the expectation value in the initial state of the internal modes as

⟨O[X1]⟩ =
∫

DX1DX2 e
iS[X1,x1,(e1)aµ,e1]−iS[X2,x2,(e2)aµ,e2]O[X1], (5.81)

for a generic composite operator O[X], the variation with respect to the einbein e yields

⟨papa −HX⟩ = 0, (5.82)

where the Hamiltonian, in the absence of interactions, is

HX = − δ

δe

(
eLX(X, e

−1Ẋ)
)
= Ẋ

∂LX

∂Ẋ
− LX . (5.83)

Without interactions, (5.82) has the interpretation of a mass-shell constraint, which relates the invariant

mass ⟨papa⟩ to the initial state of the variable X.

Papapetrou–Mathison–Dixon equations. Let us focus on the free point-particle action (5.76), which

we shall rewrite as

Spp =

∫
dτ

(
dxµ

dτ
pae

a
µ +

1

2
Sabg

µνeaµ
D

Dτ
ebν −

1

2
e
(
pap

a − LX(X, e
−1Ẋ)

)
+ eλaS

ab(X)pb(X)

)
. (5.84)

The variation with respect to the kinematic variables (xµ, pa, e
a
µ, Sab, λa, e) yields the Papapetrou–

Mathison–Dixon equations of motion [122–124]. For instance, taking the variation with respect to eaµ
(and holding the metric fixed):

dxµ

dτ
pa +

1

2
Sabg

µα D

Dτ
ebα +

1

2

D

Dτ
(Sabe

b
αg

αµ) = 0. (5.85)

Contracting with eaβg
βν and rewriting the last term as 1

2e
a
βg

βν D
Dτ (Sabe

b
αg

αµ) = 1
2
D
Dτ S

νµ +
1
2Sabe

a
αg

αµ D
Dτ (e

b
βg

βν), we get, after taking the antisymmetric combination:

D

Dτ
Sµν =

dxµ

dτ
pν − dxν

dτ
pµ. (5.86)

Analogously, the variation with respect to xµ(τ) (and holding the tetrad fixed) yields [79]

D

Dτ
pµ = −1

2
Rµνρσ

dxν

dτ
Sρσ, (5.87)
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which generalizes (5.25) for nonzero spin. The right-hand side of (5.87) corresponds to the usual

Papapetrou–Mathison–Dixon force of a spinning point particle, in the absence of other interactions.

In the absence of dissipation, the variation with respect to pµ and Sµν gives a relation between (pµ, Sµν)

and (ẋµ,Ωµν). However, in the presence of dissipation, the momentum variables depend on the internal

degrees of freedom X and cannot be obtained in a model-independent. In other words, one needs in

principle to know the dynamics of X, i.e. LX(X, e
−1Ẋ). In some cases, this can be sidestepped if one

knows the microscopic theory, and one can obtain the relation between Sµν and Ωµν by performing an

explicit matching [101]. On the other hand, the relation between ẋµ and pµ follows in general from

(5.86), (5.87) and the constraint Sabpb = 0. In fact, from D
Dτ (S

µνpν) = pν
D
Dτ S

µν +Sµν
D
Dτ p

ν , and from

eqs. (5.86) and (5.87), it follows that [101]

p2
dxµ

dτ
− pµpν

dxν

dτ
− 1

2
Rνλρσ

dxλ

dτ
SρσSµν = 0. (5.88)

Note that, in the absence of interactions, for an object at rest one recovers that pµ is proportional to

dxµ/dτ . Then, the equations of motion imply that

p2 =M2, S2 ≡ 1

2
SµνSµν (5.89)

are conserved along the worldline, i.e.,

D

Dτ
p2 = 0,

D

Dτ
S2 = 0. (5.90)

The free Papapetrou–Mathison–Dixon equations will be modified by the presence of interactions and

finite-size operators in the EFT. Similarly to (5.71), tidal couplings will modify the equations of motion

for the kinetic variables. In particular, including dissipation, we have in general

D

Dτ
p2 ̸= 0,

D

Dτ
S2 ̸= 0, (5.91)

where the right-hand sides are expected to involve the in-in expectation value of the tidal operators in the

state of the internal modes.

To be concrete, on top of the point-particle action (5.76), let’s focus on the leading-order tidal coupling

operators. For illustrative purposes, let’s consider the electric sector only. We shall thus write

Sint ⊃
∫

dτ eQ
(E)
ij (X, τ)Eij(x(τ)), (5.92)

where Q
(E)
ij (X, τ) is a composite operator that depends on the internal degrees of freedom X. Diagram-

matically, the interaction (5.92) can be expressed as in figure 6.

From a bottom-up perspective, we do not have in general access to the explicit form of Q
(E)
ij (X, τ).

Nevertheless, we can still analyze the structure of its correlation functions. In practice, what we will do is

to parametrize them with some unknown coefficients, which carry all the information about the unknown
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Figure 6: Interaction vertex between the worldline and the Q and E fields.

UV physics, and fix them by performing a matching with some explicit models. For example, imagine that

we are interested in computing the one-point function ⟨Q(E)
ij (τ)⟩in-in. For weak external fields, we expect

⟨Q(E)
ij (τ)⟩in-in from linear response theory to be of the form

⟨Q(E)
ij (τ)⟩in-in =

∫
dτ ′G

ij|kl
R (τ − τ ′)Ekl(x(τ

′)), (5.93)

where Ekl(x(τ
′)) plays the role of the external source, while G

ij|kl
R (τ − τ ′) is the retarded Green’s function,

defined as

G
ij|kl
R (τ − τ ′) = −i⟨[Q(E)ij(τ), Q(E)kl(τ ′)]⟩Θ(τ − τ ′), (5.94)

where Θ(τ) is the Heaviside step function. Since G
ij|kl
R (τ − τ ′) is a real quantity, it satisfies[

G
ij|kl
R (−ω)

]∗
= G

ij|kl
R (ω) (5.95)

for real frequencies. Therefore, it must be that Re[G
ij|kl
R (ω)] is an even function of ω on the real ω-axis,

while Im[G
ij|kl
R (ω)] is odd. In general we do not know how GR depends on the microscopic physics of the

system, but we know that, whatever the UV theory is, it must be analytic for Imω ≥ 0 [101]. If the typical

time scale of the external perturbing field is long compared with the time scale of the internal dynamics,

we can work in an adiabatic approximation. From a low-energy perspective, we shall thus expand the

retarded Green’s function in powers of the frequency. The most general parametrization that is compatible

with these requirements is, in frequency space,

G
ij|kl
R (ω) = λ

ij|kl
0 + i(rsω)λ

ij|kl
1 + (rsω)

2λ
ij|kl
2 + · · · . (5.96)

Let us comment on the following aspects:

• The tensorial structure in the expressions above, e.g. (5.92), stems from the fact that, for rotating

objects, one can construct different combinations involving the spin [99, 101, 121]. In other words,

the idea is to find a basis of linearly independent tensors, which we can use to write the most general

parametrization of λ
ij|kl
n .21 For instance, the leading order coefficient can be written in full generality,

in D = 4, as [121]

λ
ij|kl
0 = Λω0,S0δ

(i
(kδ

j)T
l)T

+Hω0,S1S(i
(kδ

j)T
l)T

+Λω0,S2s(is(kδ
j)T
l)T

+Hω0,S3s(is(kS
j)T

l)T +Λω0,S4s(is(ks
j)T sl)T ,

(5.97)

21We are assuming to be in the frame where the point particle has zero velocity, so that indices here and below are purely

spatial.
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where

si =
1

2
εijkSjk (5.98)

is the Pauli–Lubanski spin vector, and where Λ and H are some coefficients. Similar expansions can

be written down for the other tensors in (5.96), e.g.,

λ
ij|kl
1 = Hω1,S0δ

(i
(kδ

j)T
l)T

+ Λω1,S1S(i
(kδ

j)T
l)T

+Hω1,S2s(is(kδ
j)T
l)T

+ Λω1,S3s(is(kS
j)T

l)T +Hω1,S4s(is(ks
j)T sl)T ,

(5.99)

λ
ij|kl
2 = Λω2,S0δ

(i
(kδ

j)T
l)T

+Hω2,S1S(i
(kδ

j)T
l)T

+ Λω2,S2s(is(kδ
j)T
l)T

+Hω2,S3s(is(kS
j)T

l)T + Λω2,S4s(is(ks
j)T sl)T ,

(5.100)

...

an so on for higher powers of ω [121, 125]. Analogous expressions hold in higher spacetime dimensions.

Note that, in the case of non-rotating objects, everything boils down to the symmetric-trace-free

product of Kronecker symbols.

In the expressions above, we used two different symbols for the tidal coefficients, depending on the numbers

of ω and spin factors at each order: Λ denotes terms associated with conservative effects, while H refers

to dissipative terms (‘H’ stands for tidal ‘heating’). In fact:

• In the previous parametrization of the response, the operators D/Dτ , Sij and si are odd under

time reversal. All terms in (5.96) that respect time-reversal invariance can be reabsorbed into local

contact terms on the worldline and contribute to the conservative tidal deformation. For instance,

for non-rotating objects, such terms are all those that are even in ω (to leading order in derivatives

and in D = 4, we already wrote them in eq. (5.68)): in particular, Λω0,S0 corresponds to the static

Love numbers, while Λω2n,S0 for n ≥ 1 represent the dynamical Love numbers.

• Instead, all terms that contain a total odd number of ω, Sij and si break time-reversal invariance

and correspond to tidal dissipation (or, equivalently, tidal heating). As such, they cannot be written

in the form of local operators on the worldline. For non-rotating objects, such operators are defined

by an odd number of ω in the adiabatic expansion (5.96).

• Similar considerations hold in the presence of the magnetic tidal field Bijk. The only difference that

one should keep in mind is that under a time-reversal transformation B is odd, as opposed to E

which is even [121, 125].

A summary of the main conservative and dissipative coefficients in the worldline EFT is given in table 1

(see [121, 125] for further details). We also report the PN order at which each coefficient (in the electric

sector) starts contributing [79]. The first two rows correspond to the conservative sector, while the last

three contain the leading dissipation coefficients. Note that, within each sector, increasing the power of ω

by one is tantamount to adding a +1.5PN: this stems from the fact that (see eq. (5.1)):

ω ∼ v

r
∼ v3. (5.101)
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Response coefficients Notation Start contributing at PN order

Tidal (static) Love numbers ΛEω0,S2n 5

Dynamical tidal Love numbers
ΛEω1,S2n+1 6.5

ΛEω2,S2n 8

LO (static) tidal dissipation numbers HE
ω0,S2n+1 2.5

NLO tidal dissipation numbers HE
ω1,S2n 4

NNLO tidal dissipation numbers HE
ω2,S2n+1 5.5

Table 1: Leading-order (LO) and next-to-leading-order (NLO) conservative and dissipative tidal response coefficients

in the worldline EFT, including the PN order at which they start contributing. Note that we introduced an extra

superscript E on Λ and H to emphasize that the PN order in the rightmost column refers to the electric sector E:

magnetic tidal dissipation effects start appearing at 1PN order higher than their electric counterparts (this essentially

follows from the relative velocity suppression, B ∼ vE) [125].

This explains the increasing PN counting from top to bottom in the rightmost column in table 1. We stress

that, for rotating bodies, the PN counting is implicitly done assuming large spin [79].

The generalization to higher orders in spatial gradients is straightforward; it is enough to add more

indices. Note that adding spatial derivatives is equivalent to adding extra powers of 1
r , i.e. increasing the

PN order at which the effect starts contributing.22 The interaction terms, capturing the linear (conservative

and dissipative) response of the system, take now the form

Sint ⊃
∫

dτ eQi1···iL(X)C
(s)
i1···iL , (5.102)

where C
(s)
i1···iL stands schematically for external probe fields: they can belong to the scalar, vector and

tensor gravitational sectors, but can capture also scalar and spin-1 fields. For example, for a scalar field

ϕ, one has

C
(0)
i1···iL = ∂(i1 · · · ∂iL)T ϕ , (5.103)

while for gravity the possible combinations, built out of the Weyl tensor, are the ones written e.g. in

eq. (5.57):

∂(i1 · · · ∂iL−2EiL−1iL)T , ∂(i1 · · · ∂iL−2BiL−1iL)T j , ∂(i1 · · · ∂iL−2CiL−1iL)T j1j2 . (5.104)

Integrating out the X fields, we will find an effective action (see section 6 for further details) where

the two-point function of Q appears. Since we are interested in the classical limit, the relevant two-point

function is the causal retarded Green’s function [101], which at generic order in the multipolar expansion

takes the form

G
i1···iL|j1···jL′
R (τ − τ ′) = −iΘ(τ − τ ′)⟨[Qi1···iL(τ), Qj1···jL′ (τ ′)]⟩ , (5.105)

22Schematically, one more spatial derivative on an EFT operator brings a +1PN with respect to the previous order operator

in the same conservative/dissipative sector.
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which we will expand as

G
i1···iL|j1···jL′
R (ω) = λ

i1···iL|j1···jL′
0 + i(rsω)λ

i1···iL|j1···jL′
1 + (rsω)

2λ
i1···iL|j1···jL′
2 + · · · (5.106)

where the coefficients admit a decomposition in terms of conservative and dissipative parameters as the

one in table 1.

Note that, at quadratic order in the EFT action, the breaking of spherical symmetry in the presence of

nonzero spin implies possible mixing effects between terms with a different number of spatial gradients.

One example is the quadrupole-octupole mixing, which is schematically of the form E · S · ∂B [121].

Beyond linear-response approximation and nonlinear Love numbers. All the previous discus-

sion admits a natural extension to higher orders in perturbation theory: the EFT provides a systematic

framework to describe nonlinear effects and nonlinear deformation of compact objects. In particular, we

can describe the response beyond the linear approximation (see, e.g., [81, 126–130]). For example, at

leading order in derivatives, in the purely conservative electric (even) sector, one can write the following

nonlinear interaction terms [128, 129]

Sint ⊃
∫

dτ e

∞∑
n=1

[
λ(E)
n Eµ1

µ2 · · ·Eµn+1
µ1 + . . .

]
. (5.107)

In a similar fashion, one can describe dissipative effects. Terms on the worldline like these ones reflect the

nonlinear couplings between gravity and the UV modes that have been integrated out. In eq. (5.107), the

coefficients λ
(E)
n correspond to the nonlinear Love numbers.

Summary. In the worldline EFT, finite-size effects—like the tidal deformability of the object—are

captured by coefficients of higher-dimensional operators. The operators are in general composite objects

that depend on the internal degrees freedom and can account for dissipation in the system. As opposed

to the dissipative response, conservative response is encoded in local operators on the worldline, whose

coefficients are the Love numbers. One main advantage in using the EFT to define the linear response

of the system is that the Love numbers are coupling constants of gauge invariant operators. As such,

they are independent of the choice of coordinates.
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6 Tidal deformability and induced linear response of black holes

In the previous section, we introduced the worldline EFT and defined the conservative and dissipative

response coefficients in the EFT. In this section, we want to determine those coefficients in terms of the

microscopic properties of the compact object by performing an explicit matching. We will first solve the

full Einstein equations in general relativity in the small-frequency limit by requiring that the solution

approaches a tidal field profile at infinity. Using the ingredients of the previous section, we will next

perform an analogous calculation in the worldline EFT and compute the response field. Finally, we will

compare the response field solutions and match the effective couplings. Before doing so, it is instructive to

consider an analogy with a more familiar case in electromagnetism.

Warm-up example. Let’s consider a dielectric sphere of radius R in electromagnetism and recall the

standard calculation of the electric polarization in the presence of an external electric field [131]. In

the limit of static fields, the Laplace equation for the potential is ∇⃗2Φ = 0. After imposing regularity

at the center of the sphere, the solution inside the dielectric is

Φint =
∑
L

ALr
LPL(cos θ), (6.1)

in terms of the Legendre polynomials PL. Outside the dielectric, the most general solution is of the

form

Φext =
∑
L

[
BLr

L + CLr
−L−1

]
PL(cos θ). (6.2)

The boundary condition at r = ∞ fixes BL, which will match the amplitude of the external field, while

AL and CL are determined by matching conditions across the surface of the dielectric:

∂

∂θ⃗
Φint =

∂

∂θ⃗
Φext, ϵ

∂

∂r
Φint = ϵ0

∂

∂r
Φext, (6.3)

in terms of the vacuum and dielectric permittivities ϵ0 and ϵ. The solutions are

AL = BL
ϵ0(2L+ 1)

(L+ 1)ϵ0 + Lϵ
, CL = BL

L(ϵ0 − ϵ)R2L+1

(L+ 1)ϵ0 + Lϵ
. (6.4)

Outside the sphere, the potential is equivalent to the applied field plus the potential of an electric

multipole moment given by the coefficient of r−L−1. In generic D spacetime dimensions, the two

falloffs correspond to rL and r−(L+D−3).

A similar calculation can in principle be done in gravity. Instead of Maxwell equations, one would

solve the Einstein equations, impose suitable matching conditions at the surface of the object and extract

the coefficients of the induced r−(L+D−3) tail at large distances. However, for gravity the situation is

slightly more delicate. In fact, as opposed to electromagnetism, freedom associated with the choice of

coordinates and nonlinearities in general relativity may introduce ambiguities in the definition of the

response coefficients. We will give some explicit examples below. One way to get around these issues is to
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define the tidal response of the object in the worldline EFT, as we have seen in the previous section.

In the following, let’s first see how the response field is computed in full general relativity. We will later

match the result with the worldline EFT and extract the response coefficients.

6.1 Linear response fields: full theory calculation

Conservative response. Let us start by focusing on the conservative response at zero ω for a non-

rotating black hole. For simplicity, we will consider a scalar perturbation [10, 97]. The generalization to

gravitational perturbations is conceptually straightforward. For Schwarzschild black holes, the calculation

of the static Love numbers was originally obtained in [132–134] (see also [10, 97, 120, 135]). It was later

generalized to the case of Kerr black holes in [99, 136–138]. Instead, the Love numbers of charged, non-

rotating black holes in Einstein–Maxwell theory in four spacetime dimensions have been studied in [139–

141].

Let us take the Klein–Gordon equation □ϕ = 0 for a massless scalar field ϕ. Decomposing in scalar

spherical harmonics as

ϕ(x) =
∑
L,M

Ψ(t, r)r
2−D
2 YM

L (θ), (6.5)

the equation for Ψ takes the Schrödinger-like form (2.67). In the zero-frequency limit, it reduces to

fΨ′′ + f ′Ψ′ −
(
L(L+D − 3)

r2
+ f ′

D − 2

2r
+ f

(D − 4)(D − 2)

4r2

)
Ψ = 0 , (6.6)

where we have reverted from the tortoise coordinate back to the original radial coordinate r. It is convenient

to introduce the dimensionless radial variable

x ≡
(rs
r

)D−3
, (6.7)

such that the black hole horizon is now located at x = 1, while spatial infinity corresponds to x = 0. In

addition to this coordinate change, we also perform the field redefinition

u(x) ≡ x
−D+2L−4

2(D−3) Ψ(r(x)) , (6.8)

which recasts eq. (6.6) as a hypergeometric equation in the standard form:

x(1− x)u′′(x) +
[
c− (a+ b+ 1)x

]
u′(x)− a b u(x) = 0 , (6.9)

where the parameter values are given by

a = L̂+ 1 , b = L̂+ 1 , c = 2L̂+ 2 , with L̂ ≡ L

D − 3
. (6.10)

Notice that the parameters a, b and c satisfy the condition a+b−c = 0. The benefit of these transformations

is that the hypergeometric equation is extremely well-studied, and therefore the solutions of interest are

readily available in the literature.

The differential equation (6.9) is a second-order equation, so we require two boundary conditions to

specify completely a solution. On physical grounds, the first requirement we will impose is that our
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solution be regular at the black hole horizon, i.e., at x = 1. The second boundary condition fixes instead

the normalization of the growing mode solution at radial infinity, i.e., at x = 0. We can then read off the

induced sub-leading fall-off at radial infinity, which captures the linear response to the externally applied

field. Note that the overall normalization of the solution at infinity is formally a boundary condition, but

it does not affect the ratio of the growing and decaying modes at infinity, which is ultimately what we are

interested in.

We will derive the solution for generic values of the parameter L̂. In principle, one has to be careful,

because for certain values of the parameters (6.10) the hypergeometric equation becomes degenerate, i.e. the

two standard solutions are no longer linearly independent. This happens in two cases: when L̂ is either

integer or semi-integer. In the end, this will not be a problem because the limit of L̂ being integer or

semi-integer is smooth [10, 97]. In other words, we can safely compute the Love numbers for generic L̂ and

take the integer or semi-integer limit at the end. See Refs. [10, 97] for details. Note that in D = 4 L̂ is

always an integer number: this procedure will allow us also to stress an important difference between Love

numbers in D = 4 versus D > 4.

When L̂ is neither integer nor half-integer (such that all the parameters a, b, c − a, c − b, and c are

non-integer), the two linearly independent solutions to (6.9) are [142–144]

u1(x) = 2F1

[
L̂+ 1, L̂+ 1

2L̂+ 2

∣∣∣x ] and u5(x) = x−2L̂−1
2F1

[
−L̂, −L̂

−2L̂

∣∣∣x ] . (6.11)

This basis of solution is particularly natural because it corresponds to the two linearly independent falloffs

near x = 0. Using standard hypergeometric identities, one finds that the particular linear combination

that remains finite at the horizon (x = 1) is given by [10]

u(x) = A

(
Γ(−2L̂− 1)

Γ(−L̂)2
2F1

[
L̂+ 1, L̂+ 1

2L̂+ 2

∣∣∣x ]+ Γ(2L̂+ 1)

Γ(L̂+ 1)2
x−2L̂−1

2F1

[
−L̂, −L̂

−2L̂

∣∣∣x ]) , (6.12)

with A an overall normalization constant. Note that we can use the connection formula

2F1

[
a, b

a+ b− c+ 1

∣∣∣ 1− x

]
=

Γ(1− c)Γ(a+ b− c+ 1)

Γ(a− c+ 1)Γ(b− c+ 1)
2F1

[
a, b
c

∣∣∣x ]
+

Γ(c− 1)Γ(a+ b− c+ 1)

Γ(a)Γ(b)
x1−c 2F1

[
a− c+ 1, b− c+ 1

2− c

∣∣∣x ] , (6.13)

to rewrite eq. (6.12) in a more compact form as [97]

u(x) = A 2F1

[
L̂+ 1, L̂+ 1

1

∣∣∣ 1− x

]
, (6.14)

which is manifestly regular in the limit x → 1, since hypergeometric functions are normalized in such a

way that 2F1 (a, b; c; 0) = 1.

In order to extract the Love numbers, we expand the solution (6.14) around x = 0 to find

u(x→ 0) ≃ A

(
Γ(−2L̂− 1)

Γ(−L̂)2
+ · · ·+ Γ(2L̂+ 1)

Γ(L̂+ 1)2
x−2L̂−1 + . . .

)
, (6.15)
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where we are keeping only the contributions corresponding to the two linearly independent falloffs at

infinity, which are the ones relevant for the calculation of the response.

In terms of the radial coordinate, eq. (6.15) takes the form

u(r → ∞) ≃ A

(
r

rs

)L+D−3
(
Γ(2L̂+ 1)

Γ(L̂+ 1)2

(
r

rs

)L
+ · · ·+ Γ(−2L̂− 1)

Γ(−L̂)2
(rs
r

)L+D−3
+ . . .

)
, (6.16)

with the first term to be interpreted as an external tidal field with overall amplitude A, while the second

term encodes the response of the system. As expected for weak perturbations, the response is linear in the

magnitude of the external field. Note that this is the analog of eq. (6.2) in the dielectric example above.

We are interested in the ratio between the coefficient of the induced r−(L+D−3) tail of the solution and

the rL tidal component, measured in units of r2L+D−3
s [10, 97]:

kscalar =
Γ(−2L̂− 1)

Γ(−L̂)2
Γ(L̂+ 1)2

Γ(2L̂+ 1)
=

2L̂+ 1

2π

Γ(L̂+ 1)4

Γ(2L̂+ 2)2
tan(πL̂) . (6.17)

Let us make some observations:

• The coefficients (6.17) vanish whenever L̂ is integer. In particular, they vanish in D = 4 for all

multipoles. Similar expressions can be found for higher spins and, in particular, gravitational per-

turbations (e.g., [10, 97, 115]). This is associated to the well-known property that the static tidal

Love numbers of asympotically flat Schwarzschild black holes vanishes in D = 4 general relativity

[132–134], as we shall explicitly see by performing the matching below in (6.56).

• The expression (6.17) is formally divergent when L̂ is semi-integer. One can use

Γ(−n+ ϵ) =
(−1)n

n! ϵ
+O(ϵ0), (6.18)

with n = 2L̂ ∈ N and introduce a regularization prescription to subtract the 1/ϵ term [97], or rederive

more carefully the hypergeometric solution for semi-integer L̂ paying attention to the degeneracy [10].

In fact, when L̂ is half-integer the two solutions (6.11) cease to be linearly independent. Translating

L̂ back into the parameters a, b, c using (6.10), L̂ being half-integral implies that a, b, c− a and c− b

are non-integer, while c takes positive integer values. Using this information we can use standard

results to find a new basis of solutions [143]

u1(x) = 2F1

[
L̂+ 1, L̂+ 1

2L̂+ 2

∣∣∣x ] and u2(x) = 2F1

[
L̂+ 1, L̂+ 1

1

∣∣∣ 1− x

]
. (6.19)

Note that the first solution u1(x) contains a logarithmic divergence of the form log(1 − x) around

x = 1. On the other hand u2(x) is finite as x → 1 and therefore it is the solution describing the

physical scalar perturbations around a Schwarzschild black hole. In particular, since c = 1, 2, 3, · · ·
and a, b ̸= c− 1, c− 2, · · · , 0,−1,−2, · · · , one can infer its asymptotic expansion in the neighborhood
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of x = 0 via the formula

2F1

[
a, b

1 + a+ b− c

∣∣∣ 1− x

]
= 2F1

[
a, b
c

∣∣∣x ] log x−
c−1∑
n=1

(c− 1)!(n− 1)!

(c− n− 1)!(1− a)n(1− b)n
(−x)−n

+

∞∑
n=0

(a)n(b)n
(c)nn!

[
ψ(a+ n) + ψ(b+ n)− ψ(1 + n)− ψ(c+ n)

]
xn ,

(6.20)

where ψ(x) ≡ Γ′(x)/Γ(x) is the digamma function. This asymptotic expansion is of a drastically

different form than eq. (6.15). In fact, keeping in (6.20) only the leading term and the one that scales

like x−2L̂−1, as we did in eq. (6.15), and substituting in (6.10) for a, b, c one finds:

u2(x) ≃ log x+ · · ·+ (−1)2L̂(2L̂)!(2L̂+ 1)!
Γ(−L̂)2

Γ(L̂+ 1)2
x−2L̂−1 + · · · . (6.21)

An important difference compared to the case studied above is that (6.21) does not consist only of

powers of x, but contains also a logarithmic divergence as x→ 0. This logarithm can be understood

as a classical running of the value of the induced response [97]. In more detail, we can take the ratio

of the two fall-offs in (6.21) to define the dimensionless response (in units of r2L+D−3
s ):

kscalar =
(−1)2L̂(D − 3)Γ(L̂+ 1)2

(2L̂)!(2L̂+ 1)!Γ(−L̂)2
log
(r0
r

)
(half-integer L̂). (6.22)

Here we have only recorded the coefficient of the logarithmic term in the ratio of fall-offs in (6.21).

This is because only these terms are unambiguous. The dependence on r—which we can think of as

the distance at which we measure the response of the system—is an example of classical renormaliza-

tion group (RG) running. The length scale r0 is a renormalization scale to be fixed by experiments,

but that on physical grounds we expect to be of O(rs). In [97], the Love numbers in this degenerate

case are obtained from the general expression (6.17) by taking the limit of half-integer values for L̂.

This limit is singular, but it is possible to isolate a finite contribution by a suitable (classical) renor-

malization procedure that removes the divergent piece. As expected, the value (6.22) has precisely

the same logarithmic term as in [97], but differs in the finite terms.

Dissipative response. We have seen above that the induced field of a non-rotating black hole in generic

spacetime dimension has no imaginary part. As a result, this implies that there is no dissipation, as

expected. Let us now include frequency corrections. For simplicity, we will compute the solution at linear

order in ω and set the spin of the black hole to zero [145–149]. We will comment later on about Kerr black

holes.

After performing the usual decomposition

ϕ(x) =
∑
L,M

Ψ(t, r)r
2−D
2 YM

L (θ), (6.23)

at finite frequency, the Klein–Gordon equation for the massless scalar field ϕ reads

f2Ψ′′ + ff ′Ψ′ +

[
ω2 − f

(
L(L+D − 3)

r2
+ f ′

D − 2

2r
+ f

(D − 4)(D − 2)

4r2

)]
Ψ = 0 . (6.24)
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Let’s adopt again the dimensionless radial variable

x ≡
(rs
r

)D−3
. (6.25)

The frequency-dependent equation (6.24) is identical to the one obtained above in the static limit, except

for a term proportional to Ψ(r(x)) with coefficient

− 4ω2x−
2

D−3

4(D − 3)2(x− 1)x
. (6.26)

To extract the result at linear order in ω, we are allowed to make a near-zone approximation and replace

this term with [30, 146, 150, 151]

− 4ω2x−
2

D−3

4(D − 3)2(x− 1)x
−→ − 4ω2x2

4(D − 3)2(x− 1)x
. (6.27)

Note that this replacement does not affect the boundary condition at the horizon (x = 1), where the

approximation becomes in fact exact. On the other hand, away from the horizon the approximation starts

to be inaccurate at order ω2. In other words, as long as we are interested in the response at linear order

in ω this is good enough. After making the substitution (6.27), and doing the field redefinition

u(x) ≡ (1− x)
iωrs
D−3x

−D+2L−4
2(D−3) Ψ(r(x)) , (6.28)

the approximated scalar equation takes the standard hypergeometric form (6.9) with parameters

a = L̂+ 1− 2iω

D − 3
, b = L̂+ 1 , c = 2L̂+ 2 , with L̂ ≡ L

D − 3
. (6.29)

Following the procedure above, we can easily find the hypergeometric solution that satisfies the correct

infalling boundary condition at the horizon—note that the solution for ϕ should go as ϕ ∼ (r−rs)−iωrs/(D−3)

at the horizon, which means that u(x) must be regular at x = 1. Expanding it at large distances, we can

then easily extract the relative falloffs in r. The generalization of (6.17) including the linear correction in

the frequency is

kscalar + k
(ω)
scalar =

Γ(−2L̂− 1)Γ(L̂+ 1)Γ
(
1 + L̂− 2iωrs

D−3

)
Γ(−L̂)Γ(2L̂+ 1)Γ

(
−L̂− 2iωrs

D−3

)
=

Γ(−2L̂− 1)

Γ(−L̂)2
Γ(L̂+ 1)2

Γ(2L̂+ 1)
+

2π cot(πL̂)Γ(−2L̂− 1)Γ(L̂+ 1)2

Γ(−L̂)2Γ(2L̂+ 1)

iωrs
D − 3

+O(ω2) ,

(6.30)

with

k
(ω)
scalar =

2π cot(πL̂)Γ(−2L̂− 1)Γ(L̂+ 1)2

Γ(−L̂)2Γ(2L̂+ 1)

iωrs
D − 3

+O(ω2) . (6.31)

We stress that (6.30) can be trusted only up to linear order in ω.

61



6.2 Linear response fields: EFT calculation and matching

In the previous section, we obtained the full solutions (6.17), (6.22) and (6.30). In this section, we will

perform a similar calculation in the worldline EFT. Again, we will focus on non-rotating objects and scalar

perturbation. The logic straightforwardly extends to gravitational perturbations, which we will comment

on at the end.

Let us start from the EFT (5.75), where Sint is given in (5.102),

Sint ⊃
∫

dτ eQi1···iL(X)C
(s)
i1···iL , (6.32)

where we take s = 0 and

C
(0)
i1···iL = ∂(i1 · · · ∂iL)T ϕ , (6.33)

for a scalar field ϕ. The Green’s functions of the fields ϕ1 and ϕ2, defined on the two branches of the

closed-time path contour, are given by

GIJ(τ, τ
′) =

(
⟨Tϕ1(τ)ϕ1(τ ′)⟩ ⟨ϕ2(τ ′)ϕ1(τ)⟩
⟨ϕ2(τ)ϕ1(τ ′)⟩ ⟨T̄ ϕ2(τ)ϕ2(τ ′)⟩

)
, (6.34)

where I = 1, 2, and where T and T̄ denote time ordering and reversed time ordering, respectively. Note

that G11 is the standard Feynman propagator, while G12 is the Wightman function. Let us rotate the

fields on the contour to the Keldysh basis [152] as follows:(
ϕ−

ϕ+

)
≡

(
1 −1
1
2

1
2

)(
ϕ1

ϕ2

)
=

(
ϕ1 − ϕ2

1
2 (ϕ1 + ϕ2)

)
, (6.35)

where ϕ− and ϕ+ are sometimes referred to as “quantum” and “classical”. Introducing the matrix R of

the change of basis,

R ≡

(
1
2 1

−1
2 1

)
,

(
ϕ1

ϕ2

)
= R ·

(
ϕ−

ϕ+

)
(6.36)

one finds the two-point functions in the Keldysh basis [153–157]:

GKAB = R−1 ·G · (Rt)−1 =

(
G−− G−+

G+− G++

)
=

(
0 iGA

iGR GH

)
, ϕA =

(
ϕ−

ϕ+

)
, (6.37)

where GA, GR and GH are the advanced, retarded and Hadamard Green’s functions, respectively, and

where Rt denotes the transpose of R. The retarded propagator GR can be read off from eq. (5.105),

GR(τ − τ ′) = −i⟨[ϕ(τ), ϕ(τ ′)]⟩Θ(τ − τ ′) , (6.38)

while

GA(τ − τ ′) = −i⟨[ϕ(τ ′), ϕ(τ)]⟩Θ(τ ′ − τ) , (6.39)

GH(τ − τ ′) =
1

2
⟨{ϕ(τ), ϕ(τ ′)}⟩. (6.40)
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Note that the Keldysh basis indices A, B are raised/lowered with the off-diagonal matrix23

cAB = cAB =

(
0 1

1 0

)
. (6.41)

The tidal response of the object can be obtained by computing the field’s one-point function in the

presence of an external background source. In other words, we will expand ϕ as

ϕ = ϕ̄+ φ, (6.42)

where ϕ̄ denotes the tidal source and φ is the response.

We can now proceed by integrating out the internal degrees of freedom X. At leading order, this

corresponds to solving for Q using linear-response theory, e.g.,

〈
Qi1···iL(τ)

〉
=

∫
dτ ′G

i1···iL|j1···jL′
R (τ − τ ′)C

(s)
j1···jL′ (τ

′) , (6.43)

where C(s) represents a classical external source and GR is the retarded Green’s function. Plugging the

linear-response solution for Q back into (6.32), we get an interaction term in the in-in action of the form:

Γin-in
int =

∫
dτdτ ′G

i1···iL|j1···jL′
AB (τ − τ ′)C

(s)A
i1···iL(τ)C

(s)B
j1···jL′ (τ

′) , (6.44)

which we can then use to compute the one-point function

⟨φ+(t, x⃗)⟩ =
∫

Dφ+Dφ− φ+(t, x⃗) e
iΓin-in[φ], (6.45)

in the presence of a background ϕ̄+ ≡ ϕ+ − φ+. Note that we are computing the expectation value of

φ+ ≡ 1
2(φ1 + φ2) because this is the field combination that has a classical interpretation in the Keldysh–

Schwinger approach. For the external classical source we fix

ϕ̄1 = ϕ̄2 ≡ ϕ̄, (6.46)

so that ϕ̄− = 0 and ϕ̄+ = ϕ̄. Using (6.44), we find [157]:24

⟨φ+(t, x⃗)⟩ = i

∫
dτ1dτ2 ⟨φ+(x⃗, t)∂(i1 · · · ∂iL)Tφ−(τ2)⟩G(Q)

+−
i1···iL|j1···jL′ (τ2 − τ1)∂(j1 · · · ∂jL′ )T ϕ̄+(τ1)

= −(−1)L
∫

dτ1dτ2 ∂(i1 · · · ∂iL)TG
(φ)
R (x⃗, t− τ2)G

(Q)
R

i1···iL|j1···jL′ (τ2 − τ1)∂(j1 · · · ∂jL′ )T ϕ̄+(τ1) .

(6.47)

Note that what we are computing corresponds to the diagram in figure 7, with t > τ2 > τ1.

Let us now take for the external tidal source ϕ̄+(τ1) a time-dependent profile of the form

ϕ̄+(τ) = e−iωτ Ei1···iLx
i1 · · ·xiL . (6.48)

23Recall that the metric in field space in the basis (ϕ1, ϕ2) was g ≡ diag(1,−1). Thus, in the new basis, c = Rt · g ·R.
24Recall that, in the Keldysh basis, indices are contracted using c in (6.41), e.g., ϕA = cABϕB = (ϕ+, ϕ−).
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Figure 7: Feynman diagram corresponding to the induced response of a scalar field. Dissipation is parametrized by

the two-point function of the composite operator Q.

Plugging this into the one-point function (6.47), and using the instantaneous (retarded) propagator for

φ,25 and the parametrization (5.96) with coefficients given by (5.97) in the non-rotating limit,

G
i1···iL|j1···jL
R (ω) = [λ0 + irsωλ1 + . . . ] δ

(i1
(j1

· · · δiL)TjL)T
, (6.49)

we get for the one-point function (6.47) [157]:

⟨φ+(t, x⃗)⟩ = (−i)L
∫

dτ1dτ2

∫
dω̃

2π

ddp⃗

(2π)d
p(i1 · · · piL)T

p⃗2
δ(t− τ2) e

ip⃗·x⃗ e−iω̃(τ2−τ1) (λ0 + irsω̃λ1) e
−iωτ1 E(i1···iL)T

= (−i)L (λ0 + irsωλ1) E(i1···iL)T e−iωt
∫

ddp⃗

(2π)d
p(i1 · · · piL)T

p⃗2
eip⃗·x⃗ . (6.50)

Using the standard formulas

∫
ddp⃗

(2π)d
eip⃗·x⃗

1

p⃗2
=

Γ(d2 − 1)

(4π)d/2

(
x⃗2

4

)1−d2
, (6.51)

iL
∫

ddp⃗

(2π)d
eip⃗·x⃗

p(i1 · · · piL)T
p⃗2

=
Γ(d2 − 1)Γ(2− d

2)

2L(4π)d/2Γ(2− d
2 − L)

x(i1 · · ·xiL)T
(
x2

4

)1−d2−L
, (6.52)

we find, for the one-point function of the induced scalar field,

⟨φ+(t, x⃗)⟩ = (λ0 + irsωλ1)
(−1)LΓ(d2 − 1)Γ(2− d

2)

2L(4π)d/2Γ(2− d
2 − L)

e−iωt Ei1···iLx
i1 · · ·xiL

(
x⃗2

4

)1−d2−L
. (6.53)

The full result for the scalar field, including the tidal source, is

ϕ = ϕ̄+ ⟨φ+⟩ = e−iωt Ei1···iLx
i1 · · ·xiL

[
1 + (λ0 + irsωλ1) (−1)L

2L+d−2Γ(d2 − 1)Γ(2− d
2)

(4π)d/2Γ(2− d
2 − L)

1

r2L+D−3

]
,

(6.54)

25Using G
(φ)
R (p⃗, t− τ2) = − 1

p⃗2
δ(t− τ2) is good enough for the response up to linear order in ω.
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where r ≡
√
x⃗2 and D = d+ 1.

In the case of rotating objects, eq. (6.53) is straightforwardly generalized to

⟨φ+(t, x⃗)⟩ =
(
λ
i1···iL|j1···jL′
0 + irsωλ

i1···iL|j1···jL′
1

) (−1)LΓ(d2 − 1)Γ(2− d
2)

2L(4π)d/2Γ(2− d
2 − L)

e−iωt Ej1···jL′xi1 · · ·xiL
(
x⃗2

4

)1−d2−L
,

(6.55)

which is valid up to linear order in ω.

Matching. The result (6.54) should be compared with the analogous calculation in the full theory. Let’s

perform the matching between (6.30) and the EFT result (6.54) for ω = 0. We find, for the conservative

static sector,

λ0 = kscalar
(4π)d/2(−1)LΓ(2− d

2 − L)

2L+d−2Γ(d2 − 1)Γ(2− d
2)

, (6.56)

where kscalar is given in (6.17), with d = D − 1, while, for the dissipative response at linear order in the

frequency, we find

λ1 =
k
(ω)
scalar

irsω

(4π)d/2(−1)LΓ(2− d
2 − L)

2L+d−2Γ(d2 − 1)Γ(2− d
2)

, (6.57)

where k
(ω)
scalar can be read off from (6.31).

Summary and outlook. In the section above, we have explicitly performed the matching for the static

Love number coupling λ0 and the dissipative number λ1, up to linear order in the small frequency

expansion, in a simple toy scalar field model on Schwarzschild spacetime. In the example, ω was the

frequency of an external time-dependent perturbation in the lab frame, and the black hole was assumed

to be non-rotating. We have shown that, in D = 4, λ0 = 0 while λ1 ̸= 0. This result can be easily

extended to gravitational perturbations and Kerr black holes, as well as to higher orders in ω. In the

case of rotating objects, the matching is more naturally done in the rest frame of the body; in such

cases, as opposed to Schwarzschild black holes, one finds that a dissipative response can be induced

by an external tidal field that is static in the lab frame, but that appears to be time dependent in the

frame that co-rotates with the black hole [99, 157].

In summary:

• In D = 4 general relativity, the gravitational static Love numbers λ0 are zero for both

Schwarzschild [10, 97, 120, 132–135] and Kerr [99, 136–138] black holes. For tidal perturbations

that are time-independent (in the lab frame), there is no dissipative response for Schwarzschild

black holes, while the dissipative response is non-vanishing for Kerr black holes. In the latter
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case, dissipation is a direct consequence of the rotation and is associated to frame dragging

effects [99, 136–138].

• For Kerr black holes, the naive calculation of the response coefficients in full general relativity

is affected by an ambiguity in the source/response split. In [99, 136, 137], such ambiguity was

solved by performing an analytic continuation in L: one first obtains the static solution under the

assumption that L is a real, non-integer number; one then computes the response numbers and

sets L to the desired integer value in the result. A similar ambiguity is present for quadrupolar

perturbations of Reissner–Nordström black holes [141].

• The vanishing of the Love numbers in four spacetime dimensions has been known as an out-

standing naturalness puzzle in gravity [84, 158]. Following ’t Hooft’s naturalness principle, in

the absence of symmetries, one in general expects Wilson coefficients to be order-one numbers,

in units of the EFT cutoff scale. In this sense, the vanishing of black hole Love numbers in

D = 4 appears to be associated with a fine tuning in the EFT. There are currently two main

different proposals of solution to this puzzle: the first one is based on ladder symmetries of black

hole perturbations [31, 149] (see also [141, 159]), while the second one relies on symmetries of a

particular near-zone approximation of the linearized dynamics [160, 161]. In the case of scalar

perturbations of Schwarzschild black holes, a link between the two sets of symmetries has been

explained in [149].

More on the vanishing of the static Love numbers in four spacetime dimensions. It is instruc-

tive to look more closely at the vanishing of the static Love numbers in D = 4 from an EFT perspective.

For simplicity, we will focus again on scalar perturbations around Schwarzschild black holes.

From a UV point of view, the vanishing of kscalar in (6.17) is a consequence of the fact that the static

equation (6.6) is a degenerate hypergeometric equation and the solution (6.12) that is regular at the black

hole horizon has no decaying falloff at infinity in D = 4, i.e., schematically,

ϕ(r) ∼ rL + rL−1 + · · ·+ 1, (6.58)

with constant coefficients. With the same logic of the metric reconstruction of section 5.2, one can recover

the full solution (6.58), order by order in Gm, from the worldline EFT. This amounts to computing the

diagrams in figure 8. Let’s show this explicitly for first diagram with single insertion on the worldline,

which corresponds to the first subleading correction to the rL tidal profile in (6.58).

The worldline EFT of the compact object is (see eqs. (5.20), (5.35) and (5.36) in D = 4):

SEFT =

∫
d4x

√
−g
(
M2

Pl

2
R− 1

2
gµν∂µϕ∂νϕ

)
−m

∫
dτ
√

−gµνvµvν , (6.59)

where vµ ≡ dxµ/dτ . Let’s expand it around the Minkowski background and keep terms up to the next-to-

leading order in 1/MPl. In order for the graviton action to be canonically normalized, we will define the
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Figure 8: Reconstruction of the subleading falloff terms in the scalar solution (6.58). Wavy legs correspond to

graviton propagators, while straight lines represent scalar legs. The dots refer to diagrams with higher number of

mass insertions on the worldline, which are not shown explicitly.

metric perturbation as in eq. (5.38), i.e.,

gµν = ηµν +
2

MPl
hµν , (6.60)

where we are using the mostly-plus signature of the metric and hµν has dimensions of an energy. Up to

linear order in hµν , the worldline action (6.59) is

SEFT =

∫
d4x

[
1

2
hEh− 1

2
ηµν∂µϕ∂νϕ+

(
ηµαηνβ − 1

2
ηαβηµν

)
hαβ
MPl

∂µϕ∂νϕ+
m

MPl

∫
dτ hµνv

µvν + . . .

]
,

(6.61)

where E is the Lichnerowicz operator, and where we used the standard formulas

δ
√
−g =

1

2

√
−g gµνδgµν , (6.62)

δgµν = −gµαδgαβgβν , (6.63)

with δgµν = 2hµν/MPl.
26 In the Lagrangian we will expand the scalar in background plus perturbations,

ϕ = ϕ̄+ φ. For instance:

hαβ∂µϕ∂νϕ = hαβ∂µϕ̄∂ν ϕ̄+ hαβ∂µϕ̄∂νφ+ hαβ∂µφ∂ν ϕ̄+ hαβ∂µφ∂νφ . (6.65)

From (6.61) and the split ϕ = ϕ̄ + φ, we can then read off the Feynman rules for the single-emission

diagrams. The graviton and scalar propagators are

GdD
µνρσ(k) =

i

k2
Pµνρσ = − i

2k2
(ηµρηνσ + ηµσηνρ − ηµνηρσ) , G(k) =

−i
k2
, (6.66)

respectively (see also eq. (5.41)). The Feynman rule for the cubic vertex with one ϕ̄ and one φ is

− 2i

MPl

(
ηµαηνβ −

1

2
ηαβηµν

)
kα2 k

β
3 = − i

MPl
(k2µk3ν + k2νk3µ − ηµνk2αk

α
3 ) , (6.67)

26By iterating (6.62) and (6.63), one can easily derive the expansion of
√
−g, e.g.,

√
−g =

√
−η

[
1

MPl
ηµνhµν +

1

2M2
Pl

(
ηµνηαβ − 2ηµαηνβ

)
hµνhαβ

+
1

6M3
Pl

(
ηµνηαβηρσ − 6ηµρηνσηαβ + 8ηµαηβρησν

)
hµνhαβhρσ +O(h4)

]
. (6.64)
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while the mass insertion on worldline is

im

MPl

∫
dτ e−ikµx

µ(τ) vµvν . (6.68)

Let’s compute the diagram with single insertion of (6.67) (the first one in figure 8). In the absence of

scalar charge, only the graviton line can be attached to the worldline. The resulting diagram is expected

to reproduce the rs correction to the external scalar field:

⟨ϕ(x)⟩ = − m

2M2
Pl

∫
dτ vµvν

∫
d4k

(2π)4
d4q

(2π)4
e−i(k−q)µx

µ(τ)+ikµxµ

k2(k − q)2
ϕ̄(q)·

· (ηµρηνσ + ηµσηνρ − ηµνηρσ) (−kρqσ − kσqρ + ηρσkαq
α)

=
m

2M2
Pl

∫
dτ vµvν

∫
d4k

(2π)4
d4q

(2π)4
e−i(k−q)µx

µ(τ)+ikµxµ

k2(k − q)2
ϕ̄(q) (kµqν + kνqµ) , (6.69)

which vanishes identically because of the form of the Fourier transform ϕ̄(q) which is localized at q = 0

(see, e.g., (6.48) with ω = 0). This is consistent with the full scalar solution in harmonic Schwarzschild

coordinates (upon identifying m with the ADM mass M) [105]

ds2 = −r −GM

r +GM
dt2 +

r +GM

r −GM
dr2 + (r +GM)2dΩ2

S2 , (6.70)

which has in fact vanishing subleading correction inGM . The next-order correction is instead non-vanishing

and can be recovered by computing the next Feynman diagrams in figure 8 with two mass insertions on the

worldline. Proceeding in this way, one can eventually reconstruct the full scalar tidal field solution (6.58)

[157].

Non-renormalization of static Love number couplings. In addition to reconstructing to full scalar

solution from the EFT, one can also understand the absence of logarithmic running of the Love number

couplings. On top of the bulk and point-particle action (6.59), let’s add the quadratic, finite-size operators

Sscalar
int =

∑
L

1

L!

∫
dτ e λL

(
∂(i1 · · · ∂iL)ϕ

)2
, (6.71)

in the conservative sector. Since we are interested in stationary fields, it is natural to perform a temporal

Kaluza–Klein (KK) dimensional reduction for the metric [97, 115, 162]:

ds2 = gµνdx
µdxν = − e2ψ

(
dt− 2AIdx

I
)2

+ e−
2ψ
D−3 γIJdx

IdxJ , (6.72)

where ψ, AI and γIJ correspond to the Newtonian potential, the gravito-magnetic vector and the three-

dimensional metric, respectively, and where I, J = 1, . . . , D−1. For time-independent fields, the Einstein–

Hilbert action takes the form [115] (we will set G = 1 for simplicity)

SEH =
1

16π

∫
dDx

√
γ

(
R[γ]− D − 2

D − 3
∂Iψ∂

Iψ + e2
D−2
D−3

ψ FIJF
IJ

)
, (6.73)

where FIJ = ∂IAJ − ∂JAI and R[γ] is the Ricci scalar of the metric γ. Here we are interested in

the renormalization of the scalar couplings λL in (6.71). We have mentioned in section 5 that one can
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systematically reconstruct the background Schwarzschild metric by graviton insertions on the worldline.

We shall take advantage of this fact by ‘fixing a gauge’ that is consistent with the GR metric reconstruction:

in other words, we shall choose the fields in the KK metric (6.72) in such a way that the EFT calculation

of the off-shell graviton one-point function automatically ensures the correct matching with the expanded

background metric [97, 103, 157].27 In practice, we will fix

γIJ = δIJ(1 + σ), AI = 0. (6.74)

This choice matches the isotropic Schwarzschild coordinates [97]

ds2 = −
(
4rD−3 − rD−3

s

4rD−3 + rD−3
s

)2

dt2 +

(
1 +

rD−3
s

4rD−3

) 4
D−3 (

dr2 + r2dΩ2
SD−2

)
. (6.75)

Then, the Einstein–Hilbert action for the perturbations schematically takes the following form:

SEH ∼
∫

dDx
[
(1 + σ + . . . )(∂Iψ)

2 + (1 + σ + . . . )(∂Iσ)
2
]
. (6.76)

Similarly, from the point-particle and scalar actions,

Spp ∼ m

∫
dτ
(
1 + ψ + ψ2 + . . .

)
, (6.77)

Sscalar ∼
∫

dDx
(
1 + σ + σ2 . . .

)
(∂Iϕ)

2. (6.78)

Note that, for static perturbations, the scalar ϕ couples only to σ and not to ψ. The opposite is true

for the point particle: there are no σ insertions on the worldline. In addition, every vertex in the EFT

involving σ always contains an even number of ψ fields. This implies that, at quadratic order in ϕ, it is

only possible to draw classical worldline diagrams with an even number of ψ’s, and hence an even number

of point mass insertions on the worldline (we are disregarding bulk loops, which are subleading and do not

contribute to the classical solution) [157]. This is consistent with the result of the calculation (6.69). In

particular, it implies that, in D = 4, it is impossible to construct a diagram producing a (2L+1)PN-order

correction to the one-point function, and that therefore the Love numbers do not get renormalized by

graviton corrections [97, 157]. Note that this is no longer guaranteed in higher dimensions, when D is odd

[10, 97].

Note that the generalization of this argument to diagrams with external graviton legs is not immediate.

As opposed to ϕ, the odd fields AI do couple directly to ψ, e.g. through a vertex ∼ ψA2 (see last term

in (6.73)). It is thus a priori possible to draw a diagram with an odd number of mass insertions on the

worldline and two external AI fields. Hence, the previous power-counting rule is inconclusive for odd

gravitational perturbations, at least with the chosen basis and gauge fixing (the absence of logarithmic

corrections from power counting in the EFT is sufficient but not necessary).

27Alternatively, one can say that, instead of expanding the EFT around flat space, one expands the metric in the action

around the perturbative Schwarzschild solution in suitable coordinates.
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The aspects about self-force and radiation reaction, presented during the last lecture, can be mainly

found in the reviews [163, 164]. For additional useful resources, see references therein, as well as

e.g. [165–170], and the Capra meetings webpage.
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D. Pook-Kolb, E. Schnetter, and H. Yang, “Nonlinear Ringdown at the Black Hole Horizon,” Phys.

Rev. Lett. 131 (2023) no. 23, 231401, arXiv:2306.11142 [gr-qc].

75

http://dx.doi.org/10.1103/PhysRevD.59.044024
http://arxiv.org/abs/gr-qc/9802063
http://dx.doi.org/10.1016/S0370-1573(99)00048-4
http://arxiv.org/abs/gr-qc/9807077
http://dx.doi.org/10.1103/PhysRevD.74.044039
http://arxiv.org/abs/gr-qc/0607025
http://dx.doi.org/10.1103/PhysRevD.76.024004
http://arxiv.org/abs/gr-qc/0703069
http://arxiv.org/abs/2405.06012
http://arxiv.org/abs/2405.10270
http://dx.doi.org/10.1103/PhysRevD.73.064030
http://arxiv.org/abs/gr-qc/0512160
http://dx.doi.org/10.1103/PhysRevD.103.104048
http://dx.doi.org/10.1103/PhysRevD.103.104048
http://arxiv.org/abs/2010.08602
http://dx.doi.org/10.1103/PhysRevD.109.044069
http://arxiv.org/abs/2310.04489
http://dx.doi.org/10.1103/PhysRevD.106.084036
http://arxiv.org/abs/2207.10870
http://dx.doi.org/10.1103/PhysRevD.90.124032
http://arxiv.org/abs/1404.3197
http://dx.doi.org/10.1103/PhysRevLett.130.081402
http://dx.doi.org/10.1103/PhysRevLett.130.081402
http://arxiv.org/abs/2208.07380
http://dx.doi.org/10.1103/PhysRevLett.130.081401
http://dx.doi.org/10.1103/PhysRevLett.130.081401
http://arxiv.org/abs/2208.07374
http://dx.doi.org/10.1103/PhysRevLett.131.231401
http://dx.doi.org/10.1103/PhysRevLett.131.231401
http://arxiv.org/abs/2306.11142


[76] H. Zhu et al., “Nonlinear effects in black hole ringdown from scattering experiments: Spin and

initial data dependence of quadratic mode coupling,” Phys. Rev. D 109 (2024) no. 10, 104050,

arXiv:2401.00805 [gr-qc].

[77] J. Redondo-Yuste, G. Carullo, J. L. Ripley, E. Berti, and V. Cardoso, “Spin dependence of black

hole ringdown nonlinearities,” Phys. Rev. D 109 (2024) no. 10, L101503, arXiv:2308.14796

[gr-qc].

[78] W. D. Goldberger, “Effective Field Theory for Compact Binary Dynamics,” arXiv:2212.06677

[hep-th].

[79] L. Blanchet, “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact

Binaries,” Living Rev. Rel. 17 (2014) 2, arXiv:1310.1528 [gr-qc].
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