
Introduction to CUDA
programming for physicists

François Gelis
IPhT, Saclay

Institut de
Physique Théorique
CEA/DRF Saclay

Lecture I

François Gelis, September 2024 0

Outline

• Architecture of GPUs
• What tasks are GPUs good at?
• Overview of CUDA

• Diagnosing errors
• Memory management (allocation, copy)
• CUDA kernels

• Streams, Synchronization
• Shared memory
• Reduction operations

• Memory performance tuning
• How many threads?
• CUDA libraries for common tasks: cuFFT, cuBLAS, ...

François Gelis, September 2024 1

Introduction

François Gelis, September 2024 1

CPU improvements in the past 40 years

• Single thread performance reaches a plateau, correlated to the plateau
in frequency, which comes from constraints of thermal dissipation

• Performance increases mostly by increasing the number of cores

François Gelis, September 2024 2

Typical CPUs

• Can have 2 (low end) to 128 (very high end) cores

• These cores share main memory, and some of the cache

• The threads running on different cores can perform totally
unrelated tasks

• The operating system takes care of sharing the available cores
among the running threads (by giving each of them time-slices
to use a core)

• Parallel programming can be done with OpenMP

François Gelis, September 2024 3

What is a GPU?

• GPU = Graphics Processing Unit. Originally, in charge of the
intensive parts of graphics manipulations

• Each pixel in an image is independent of the others =⇒ highly
parallelizable task. GPUs can have from a few hundred cores
(low end) to ∼ 20000 cores (high end)

• High accuracy not necessary for graphics =⇒ optimized for
single precision, with some shortcuts in the accuracy of certain
functions (but recent generations of GPUs are fully compliant
with common standards for floating point accuracy)

• Most GPUs have higher performance in single precision than
double precision (sometimes even higher for reduced formats,
like 16-bit floating point)

• Perform much better if all threads execute the same instruction
(Single Instruction Multiple Data = SIMD)

François Gelis, September 2024 4

Where can one do computations on GPUs?

• At IPhT:
• some personal computers/laptops have GPUs
• akira.ipht.fr: 2 x NVIDIA TITAN X

• National computing resources administered by GENCI:
• TGCC: V100
• IDRIS: V100, A100, soon: H100
(light application procedure for requests up to 50000 GPU.hour)

• CINES: L40

François Gelis, September 2024 5

Architecture of GPUs

François Gelis, September 2024 5

What’s inside a GPU?

L1 L1 L1 L1 L1

L2

Global Memory

François Gelis, September 2024 6

What’s inside a GPU?

• Computing cores (many: 100’s to 10,000’s)
• Memory: from 1-2 GB to 192 GB

• L1 cache: on the same chip as the cores, fast, shared by all
threads in a block

• L2 cache: off-chip, slower (latency ∼ 100 clock cycles)
• Global memory: off-chip, even slower (latency ∼ 500 clock cycles),
but much larger capacity

• Fast link to the host computer (32 to 128 GB/s, in each direction)
• Fast direct GPU-to-GPU links (for multi-GPU systems)

• Notes:
• A GPU devotes more hardware to computing and less hardware to
flow control. Designed primarily for executing common
instructions in all threads

• Part of the L1 cache can be used as “shared memory”, i.e., very fast
user controllable memory seen by all threads in a block

François Gelis, September 2024 7

Examples of GPUs: NVIDIA Quadro T1000 (in my laptop)

• 896 cores
• 4GB memory
• Peak performance:

• single precision: 2.6 TeraFLOPS
• double precision: 81 GigaFLOPS (1/32)

François Gelis, September 2024 8

Examples of GPUs: NVIDIA V100

• 5120 cores
• 32GB memory
• Peak performance:

• single precision: 15.6 TeraFLOPS
• double precision: 7.8 TeraFLOPS (1/2)

François Gelis, September 2024 9

Examples of GPUs: NVIDIA A100

• 6912 cores
• 80GB memory
• Peak performance:

• single precision: 19.5 TeraFLOPS
• double precision: 9.7 TeraFLOPS (1/2)

François Gelis, September 2024 10

Examples of GPUs: NVIDIA H100

• 16896 cores
• 80GB memory
• Peak performance:

• single precision: 66.9 TeraFLOPS
• double precision: 33.5 TeraFLOPS (1/2)

François Gelis, September 2024 11

Performance per Watt

• A very important concern in the design of a large computer
center is its power requirements

• NVIDIA A100: 6912 cores, 19.5 TFlops, 400W, 49 GFlops/W
• NVIDIA H100: 16896 cores, 66.9 TFlops, 700W, 96 GFlops/W

• AMD 7995WX (CPU): 96 cores, 12.2 TFlops, 350W, 35 GFlops/W

François Gelis, September 2024 12

What tasks are GPUs good at?

• Very good at tasks where all threads execute exactly the same
sequence of instructions (on different data)

• Best if successive threads access successive addresses in
memory

• Best if the ratio of computations to memory accesses is large
• Best if the data stays for a long time on the GPU (frequent
transfers to and from the GPU are detrimental to the
performance)

• Not so good for code where threads follow different logical
branches (“divergent code”)

• Not so good with “random” memory access

François Gelis, September 2024 13

Brands of GPUs

• Intel

• AMD

• NVIDIA : can be used with CUDA

François Gelis, September 2024 14

Listing all NVIDIA GPUs

• The command nvidia-smi lists all the NVIDIA GPUs available on
the computer, their main properties and current usage

• Example: on akira.ipht.fr, this command outputs

Mon Sep 16 10 : 30 : 2 1 2024
+−−−+
| NVIDIA −SMI 545 . 23 .08 Dr iver Version : 545 . 23 .08 CUDA Version : 1 2 . 3 |
|−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+
GPU Name Persistence −M	Bus− Id Disp . A	Vo l a t i l e Uncorr . ECC
Fan Temp Perf Pwr : Usage/Cap	Memory−Usage	GPU− U t i l Compute M.
		MIG M.
===+======================+======================		
0 NVIDIA TITAN Xp Off	00000000:01:00.0 Off	N/A
72% 87C P2 178W / 250W	2034MiB / 12288MiB	100% Default
		N/A
+−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+		
1 NVIDIA TITAN Xp Off	00000000:02:00.0 Off	N/A
64% 86C P2 185W / 250W	5796MiB / 12288MiB	100% Default
		N/A
+−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+

+−−−+
| Processes : |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| 0 N/A N/A 17359 C python3 2032MiB |
| 1 N/A N/A 27085 C python3 3010MiB |
+−−−+

François Gelis, September 2024 15

Goals of this course

• Goal 1: write correct CUDA programs
• compile without errors
• run without errors
• produce the expected output

• Goal 2: write fast CUDA programs
• use lots of threads
• good memory access patterns

François Gelis, September 2024 16

Overview of CUDA

François Gelis, September 2024 16

Programming frameworks for GPUs

• OpenACC (for open accelerators): similar to OpenMP, works by
adding annotations (#pragma ...) in an existing code to hint the
compiler to offload certain computations to a GPU. Works on
various brands of GPUs. Offers less control about what is really
going on on the GPU.

• OpenCL: C-like language to write programs that use GPUs. Code
in principle portable across various brands of GPUs, but with
varying performances.

• CUDA: extensions of C/C++ to run code on NVIDIA GPUs. Not
portable to other brands of GPUs, but better optimized on
NVIDIA GPUs (thanks to the software model matching closely
the features available on hardware).

François Gelis, September 2024 17

What is CUDA?

• CUDA source files usually have an extension .cu (but this is not
mandatory)

• CUDA follows the syntax of C++

• When mixing CUDA and plain C, the only complication is that
C++ functions are by default not callable from C. One should
declare them with extern ”C”, as in
extern ”C” funct ion (arguments) {
i n s t ruc t i on 1 ;
i ns t ruc t ion2 ;
. . .

}

• There exist wrappers to use CUDA in Fortran, in Python, and in a
few other programming languages

François Gelis, September 2024 18

Main classes of functions available in CUDA

• All standard functions of the C math library (such as sin, cos,
exp, ...), both in single and double precision, for execution on a
GPU. (The function names are the same, and the compiler
determines automatically which binary instruction to produce
from the context)

• Functions to transfer data to and from a GPU (between GPU and
HOST, or between two GPUs)

• Functions to start a parallel computation on a GPU

• Functions to control the scheduling between tasks

François Gelis, September 2024 19

Main steps in a typical GPU computation

• Allocate space for data on the GPU

• Populate this space (in general, by copying data from the HOST
to the GPU)

• Perform one or more computations on this data on the GPU

• Retrieve result from the GPU to the HOST

François Gelis, September 2024 20

First example - CPU version

include <omp. h>
#define REPEAT 256

f l oa t f (f l oa t x , f l oa t y) { // Dummy funct ion . . .
return s i n f (cosf (s i n f (sq r t f (powf (cosf (x*x+y*y) , 2 . 0 f))))) ;

}

i n t main (void) {
long unsigned in t N = 1024L*1024*256; // A l locate two arrays of s i z e N
f l oa t *a = (f l oa t *) malloc (N*s i zeof (f l oa t)) ;
f l oa t *b = (f l oa t *) malloc (N*s i zeof (f l oa t)) ;

for (long unsigned in t i =0 ; i <N ; i + +) { // F i l l the arrays with random numbers
a [i] = (f l oa t) rand () / (f l oa t) (RAND_MAX) ;
b [i] = (f l oa t) rand () / (f l oa t) (RAND_MAX) ;

}

for (i n t count =0; count <REPEAT ; count ++) { // Process the arrays
#pragma omp pa ra l l e l for num_threads (6) // Use OpenMP to pa r a l l e l i z e the loop

for (long unsigned in t i =0 ; i <N ; i ++) a [i] = f (a [i] , b [i]) ;
}

e x i t (0) ;
}

François Gelis, September 2024 21

First example - GPU version
include <cuda . h>
include <cuda_runtime . h>
#define REPEAT 256

__device__ f l oa t f (f l oa t x , f l oa t y) { // Function that runs on GPU
return s i n f (cosf (s i n f (sq r t f (powf (cosf (x*x+y*y) , 2 . 0 f))))) ;

}

__global__ void apply_funct ion (f l oa t * a , f l oa t * b) { // CUDA ‘ ‘ kernel ’ ’
i n t id = blockIdx . x * blockDim . x + threadIdx . x ;
a [id] = f (a [id] , b [id]) ;

}

i n t main (void) {
long unsigned in t N = 1024L*1024*256; // A l locate arrays on HOST
f l oa t *a = (f l oa t *) malloc (N*s i zeof (f l oa t)) ;
f l oa t *b = (f l oa t *) malloc (N*s i zeof (f l oa t)) ;
for (long unsigned in t i =0 ; i <N ; i + +) { // F i l l with random numbers on HOST
a [i] = (f l oa t) rand () / (f l oa t) (RAND_MAX) ;
b [i] = (f l oa t) rand () / (f l oa t) (RAND_MAX) ;

}

f l oa t *d_a ,*d_b ;
cudaMalloc (&d_a ,N*s i zeof (f l oa t)) ; // A l locate two arrays on GPU
cudaMalloc (&d_b ,N*s i zeof (f l oa t)) ;
cudaMemcpy (d_a , a ,N*s i zeof (f l oa t) , cudaMemcpyHostToDevice) ; // Copy data from HOST to GPU
cudaMemcpy (d_b , b ,N*s i zeof (f l oa t) , cudaMemcpyHostToDevice) ;
for (i n t count =0; count <REPEAT ; count + +) { // Process arrays on GPU
apply_function <<<N/128 ,128 > > >(d_a , d_b) ;

}
cudaDeviceSynchronize () ;

cudaMemcpy (a , d_a ,N*s i zeof (f l oa t) , cudaMemcpyDeviceToHost) ; // Copy r e su l t to HOST

ex i t (0) ;
}

François Gelis, September 2024 22

First example - GPU version: headers

include <cuda . h>
include <cuda_runtime . h>

• In C or C++, these headers provide the definitions of all CUDA
related functions. They need to be included at the top of all
files that use CUDA functions

François Gelis, September 2024 23

First example - GPU version: function decorations
__device__ f l oa t f (f l oa t x , f l oa t y) {
return s i n f (cosf (s i n f (sq r t f (powf (cosf (x*x+y*y) , 2 . 0 f))))) ;

}

__global__ void apply_funct ion (f l oa t * a , f l oa t * b) {
i n t id = blockIdx . x * blockDim . x + threadIdx . x ;
a [id] = f (a [id] , b [id]) ;

}

• __device__ before a function declaration tells the compiler to
produce a function that will run on the GPU

• __host__ produces a function for the CPU (this is the default
and it can be omitted)

• __device__ __host__ produces a function that runs on GPU
and CPU (it actually produces two versions of the function)

• __global__ indicates a “CUDA kernel”, i.e., a function that
applies the same sequences of instructions to all elements of
an array, and runs on the GPU

François Gelis, September 2024 24

First example - GPU version: memory operations

cudaMalloc (&d_a ,N*s i zeof (f l oa t)) ;
cudaMemcpy (d_a , a ,N*s i zeof (f l oa t) , cudaMemcpyHostToDevice) ;

• cudaMalloc(): allocates memory on the GPU. Arguments:
• Address of a pointer (when done, the pointer contains the
memory address on GPU of the allocation)

• Size of the allocation

• cudaMemcpy(): copy memory to and from the GPU.
Arguments:

• Pointer to the destination
• Pointer to the source
• Size of the chunk to be copied
• cudaMemcpyHostToDevice: direction of the copy
(also: cudaMemcpyHostToHost, cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice, cudaMemcpyDefault)

François Gelis, September 2024 25

First example - GPU version: CUDA kernel call
apply_function <<<N/128 ,128 > > >(d_a , d_b) ;

• name<<<# blocks,# threads/block>>>(arguments):
launches a CUDA kernel with
(# threads) = (# blocks) × (# threads/block)

• Returns to the host before completion
• By default, successive kernels are executed sequentially
• Scalar arguments are copied on the fly to the GPU
• Arrays must already be present on the GPU
• The block # is blockIdx.x, and the thread # is threadIdx.x.
The block size is blockDim.x

• blockIdx.x * blockDim.x + threadIdx.x is the absolute
thread index (can be used as index into an array)
Note: threads and blocks are arranged in a grid that can have up
to 3 dimensions (replace .x by .y or .z)

• All threads in a block run on the same chip and see the same L1
cache (or the same shared memory)

François Gelis, September 2024 26

First example - GPU version: synchronization

cudaDeviceSynchronize () ;

• cudaDeviceSunchronize():
• Called by the host
• Blocks until all queued CUDA calls have completed
• Can be called to safely use data on GPU
• With multiple GPUs, applies only to the currently active GPU

• Note: there are more fine grained ways of waiting for the
completion of a subset of CUDA calls

François Gelis, September 2024 27

First example - CUDA Compilation

nvcc −O3 −−use_fast_math −o tes t example−0−gpu . cu − lcuda − lcudart − l s tdc ++

• nvcc: NVIDIA’s CUDA compiler (nvcc compiles the CUDA
instructions, and passes the rest to the host compiler: gcc,
Intel’s compiler, ...)

• -O3 --use_fast_math: optimization flags
• -o test: specify the name of the executable
• -lcuda -lcudart -lstdc++: linked libraries (contain the
actual machine code for all functions used in the program)

• Note: nvcc knows where to find all CUDA header files and
libraries, so there is no need to specify their location

François Gelis, September 2024 28

First example - Timings

• Timing on CPU (with 6 cores):
Processing arrays : 63 . 27 seconds

• Timing on GPU (Quadro T1000):

Processing arrays
A l loca t ion : 0.08
Copy HOST −> GPU : 0.36
Processing : 4 . 6 1
Copy GPU −> HOST : 0 . 1 7

Tota l : 5 . 2 2 seconds

• Notes:
• GPU 12 times faster than CPU on this example
• Overheads (allocations, transfers) not totally negligible
• GPU beneficial only if there are enough computations to
compensate these overheads

François Gelis, September 2024 29

First example - Variant
__global__ void apply_function_REPEAT (f l oa t * a , f l oa t * b) { // CUDA ‘ ‘ kernel ’ ’
i n t id = blockIdx . x * blockDim . x + threadIdx . x ;
i n t count ;
for (count =0; count <REPEAT ; count ++) a [id] = f (a [id] , b [id]) ; // loop now ins ide kernel

}

i n t main (void) {
[. . .]
apply_function_REPEAT <<<N/128 ,128 > > >(d_a , d_b) ; // process arrays on GPU
[. . .]

}

• The loop from 1 to REPEAT=256 is now included directly inside
the CUDA kernel

• Only one kernel call instead of 256
• Processing time goes from 4.6” to 1.4”

• Each kernel call has an overhead ∼ 10ms
• Whenever possible: reduce the number of kernel calls by
having kernels that do more work

François Gelis, September 2024 30

First example - Using 2 GPUs

[. . .]
f l oa t *d_a1 ,*d_b1 ,*d_a2 ,*d_b2 ;
cudaSetDevice (0) ;
cudaMalloc (&d_a1 , (N/2)* s i zeof (f l oa t)) ;
cudaMalloc (&d_b1 , (N/2)* s i zeof (f l oa t)) ;
cudaSetDevice (1) ;
cudaMalloc (&d_a2 , (N/2)* s i zeof (f l oa t)) ;
cudaMalloc (&d_b2 , (N/2)* s i zeof (f l oa t)) ;
cudaSetDevice (0) ;
cudaMemcpy (d_a1 , a , (N/2)* s i zeof (f l oa t) , cudaMemcpyHostToDevice) ;
cudaMemcpy (d_b1 , b , (N/2)* s i zeof (f l oa t) , cudaMemcpyHostToDevice) ;
cudaSetDevice (1) ;
cudaMemcpy (d_a2 , a+N/2 , (N/2)* s i zeof (f l oa t) , cudaMemcpyHostToDevice) ;
cudaMemcpy (d_b2 , b+N/2 , (N/2)* s i zeof (f l oa t) , cudaMemcpyHostToDevice) ;
cudaSetDevice (0) ;
apply_function_REPEAT < < <(N/2)/128 ,128 > > >(d_a1 , d_b1) ;
cudaSetDevice (1) ;
apply_function_REPEAT < < <(N/2)/128 ,128 > > >(d_a2 , d_b2) ;

cudaSetDevice (0) ;
cudaMemcpy (a , d_a1 , (N/2)* s i zeof (f l oa t) , cudaMemcpyDeviceToHost) ;
cudaSetDevice (1) ;
cudaMemcpy (a+N/2 , d_a2 , (N/2)* s i zeof (f l oa t) , cudaMemcpyDeviceToHost) ;
[. . .]

François Gelis, September 2024 31

First example - Using 2 GPUs

• Use cudaSetDevice(n) to set which GPU is active for subsequent
commands (memory copies, kernel launches,...)

• Note: the same kernels can be used for all GPUs (but the
compiler would have to be told if there are several types of
GPUs that require distinct binary code)

• The argument n ranges from 0 to NGPU − 1

• The mapping from GPUs to the index n is defined at boot time
(not user controllable). It is often not necessary to know it

• Potential for improvement: cudaMemcpy() is synchronous, i.e.,
it returns control to the host only when the transfer is complete,
so transfers to GPU-0 and GPU-1 do not happen in parallel

François Gelis, September 2024 32

First example - Timings using 2 GPUs

• Tested on a node of jean-zay.idris.fr (with 2×V100 GPUs)

• Timing on CPU (with 20 cores):
Processing arrays : 25 .48 seconds

• Timing on 1 GPU:
Processing arrays

A l loca t ion : 0 . 19
Copy HOST −> GPU : 0.46
Processing : 1 .09
Copy GPU −> HOST : 0 .23

Total : 1 . 96 seconds

• Timing on 1 GPU (with loop inside kernel):
Processing arrays

A l loca t ion : 0 .18
Copy HOST −> GPU : 0.46
Processing : 0.30
Copy GPU −> HOST : 0 .23

Total : 1 . 1 7 seconds

• Timing on 2 GPUs (with loop inside kernel):
Processing arrays

A l loca t ion : 0.28
Copy HOST −> GPU : 0 .45
Processing : 0 . 15
Copy GPU −> HOST : 0 .22

Total : 1 . 1 1 seconds

François Gelis, September 2024 33

CUDA resources

• https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

CUDA online reference manual. Detailed description of all
available functions, grouped by topics. Very useful if one needs
a description of a function’s behavior and syntax

• Blog entries on NVIDIA website. Example:
https://developer.nvidia.com/blog/using-shared-memory-
cuda-cc/

Quick discussion of a given topic, accompanied with working
examples

• Google a CUDA function name...

François Gelis, September 2024 34

Lecture II

François Gelis, September 2024 34

Outline

• Architecture of GPUs
• What tasks are GPUs good at?
• Overview of CUDA

• Diagnosing errors
• Memory management (allocation, copy)
• CUDA kernels

• Streams, Synchronization
• Shared memory
• Reduction operations

• Memory performance tuning
• How many threads?
• CUDA libraries for common tasks: cuFFT, cuBLAS, ...

François Gelis, September 2024 35

Diagnosing errors

François Gelis, September 2024 35

My CUDA program is not working. What shall I do?

• Not an infrequent situation: a CUDA program crashes, or runs
but produces garbage

• Debugging highly parallel code is delicate (because the error
could affect a single thread out of many)

• Common causes of problems:

• Using an uninitialized pointer
• Using a host/device pointer in the wrong context
• Reading/writing beyond the size of a given allocation
• Bad scheduling among dependent tasks

• Tip: Use a different naming convention for host and device
pointers, e.g., h_ · · · for host pointers and d_ · · · for device
pointers

François Gelis, September 2024 36

The “print method”

• One can use standard print statements within CUDA code:
p r i n t f (”a=%.6 f b=%.6 f \n” , var iable1 , var iab le2) ;

in order to inspect the content of some variables

• Caveats:
• If several threads print out something, there is no guarantee that
the outputs are ordered by thread index

• If used without caution inside a kernel called with thousands of
threads, the output will be overwhelming (and useless)
One should usually put a condition such that only one (or a few)
thread prints something, e.g.,
i f (blockIdx . x * blockDim . x + threadIdx . x == 0) {
p r i n t f (”a=%.6 f b=%.6 f \n” , var iable1 , var iab le2) ;
}

François Gelis, September 2024 37

Finding “NaN” ’s

• Reading beyond the boundary of an array often reads garbage
(i.e., random bits that are not a valid representation for the
expected type), which quickly results in “NaN” (Not a Number)
appearing in the data one manipulates

• CUDA has a function isnan() that takes a float or double and
returns 0 if it is not a NaN and 1 if it is a NaN

• The same function exists also in the standard C library for
checking variables that live on the host

• The test reads
i f (isnan (var iab le)) {
do_something ;
}

• On can check in parallel for NaN’s in a large array on the GPU
(see the section on reduction operations in next course)

François Gelis, September 2024 38

Finding “NaN” ’s

• Note: when compiling with optimization flags set, some
compilers remove the test. One can avoid this by using:
i n t isnan_d (double d) {
u int64_t u ;
memcpy(&u,&d , 8) ;
return ((u&0x7ff0000000000000ULL) == 0x7ff0000000000000ULL)&&(u&0x f f f f f f f f f f f f f U L L) ;

}

i n t i snan_f (f l oa t f) {
u in t32_t u ;
memcpy(&u,& f , 4) ;
return ((u&0x7f800000) == 0x7f800000)&&(u&0x 7 f f f f f) ;

}

(the seemingly magic numbers in these functions will catch the
specific bit representation of a float or double NaN,
respectively)

François Gelis, September 2024 39

Finding faulty CUDA calls

• Some CUDA calls return before the completion of their task, and
failures may appear significantly after the command was issued

• In order to find which command caused the problem, one may
check for errors after CUDA calls. The following code must be
inserted at the top of the CUDA source file:
#define cudaCheckErrors (msg) __getLastCudaError (msg , __FILE__ , __LINE__)

i n l i n e void __getLastCudaError (const char *errorMessage , const char * f i l e ,
const in t l i ne) {

cudaError_t err = cudaGetLastError () ;

i f (cudaSuccess ! = err) {
f p r i n t f (stderr ,

”%s(% i) : CUDA error : ”
” %s : (%d) %s . \ n” ,
f i l e , l ine , errorMessage , s ta t i c_cas t < int > (er r) ,
cudaGetErrorStr ing (er r)) ;

e x i t (EXIT_FAILURE) ;
}

}

(or put in a separate file error.cu , and then included with
#include ”error.cu”)

François Gelis, September 2024 40

Finding faulty CUDA calls

• A sequence of CUDA calls
cuda_cal l_1 ;
cuda_cal l_2 ;
cuda_cal l_3 ;

can be modified to check for errors after each call:
cuda_cal l_1 ;
cudaCheckErrors (” c a l l 1 ”) ;
cuda_cal l_2 ;
cudaCheckErrors (” c a l l 2 ”) ;
cuda_cal l_3 ;
cudaCheckErrors (” c a l l 3 ”) ;

• The tags used in cudaCheckErrors(”tag”) can be chosen freely.
But, to be useful, they should be unique in order to identify
where the error occurred

• If an error is detected, the program exits immediately and
prints some info about the error (tag, source file, line number).
But these error messages are often a bit cryptic..

François Gelis, September 2024 41

Memory management

François Gelis, September 2024 41

Overview

• CUDA provides a set of functions to allocate, free, set or copy
chunks of data in the global memory of a GPU

• The list of these functions, with their detailed description, can
be found at https://docs.nvidia.com/cuda/cuda-runtime-
api/group_CUDART_MEMORY.html

François Gelis, September 2024 42

Memory layout of a GPU

L1 L1 L1 L1 L1

L2

Global Memory

• Both the global memory and the L1 cache (shared memory) are
accessible through programming. The L2 cache is handled
automatically in hardware

• In this section, we discuss only global memory. See later to see why
and how to use L1 cache as shared memory

François Gelis, September 2024 43

cudaMalloc()

• Syntax:
f l oa t *p ;
cudaMalloc (&p ,N*s i zeof (f l oa t)) ;

• CAUTION: The allocated memory region is not cleared (it may
contain garbage, or data from a previous allocation)

• The start address is properly aligned for all types

• The size (second argument) is expressed in bytes

• cudaMalloc returns an error in case of failure. It is advised to
check this (I never do it...)

François Gelis, September 2024 44

cudaFree()

• Syntax:
f l oa t *p ;
cudaMalloc (&p ,N*s i zeof (f l oa t)) ;
[. . .]
cudaFree (p) ;

• This function can only free memory that has been allocated
with cudaMalloc (or one of its variants), not host memory
allocated with the host malloc

• CAUTION: Calling cudaFree multiple times with the same pointer
produces an error

François Gelis, September 2024 45

cudaMemcpy()

• Syntax:
cudaMemcpy (dest inat ion , source , s ize , type_of_t ransfer) ;

• The source and destination pointers must correspond to
sufficiently large memory allocations (at least as large as size)

• The size is usually specified as N*sizeof(type)

• The type_of_transfer is one of:
• cudaMemcpyHostToDevice
• cudaMemcpyDeviceToHost
• cudaMemcpyDeviceToDevice (the two devices are the same)
• cudaMemcpyDefault (the type is guessed from pointer values)

• Synchronous with respect to the host (returns only after the
copy is completed)

François Gelis, September 2024 46

cudaMemcpy2D()

W bytes

S bytes

N records

W bytes

D bytes

• Syntax:
cudaMemcpy2D (dest inat ion , D , source , S ,W,N , type_of_t ransfer) ;

• Allows to copy strided data with a single command

• The source and destination arrays must be large enough to
contain the data being copied and the gaps in between

François Gelis, September 2024 47

cudaMemset()

• Syntax:
cudaMemset (address , value , s i ze) ;

• Sets size bytes to value, starting at address

• Often used with value=0 to initialize to zero a memory region

• CAUTION: value is truncated to unsigned char (i.e., one byte)
before memory is set. Use the function
cuMemsetD32(address,value,N) to set the array that starts at
address to the 4-byte value, repeated N times

François Gelis, September 2024 48

Asynchronous functions

• All the functions described so far are synchronous. They return
only after having completed their task

• There exists an asynchronous version of these functions, that
return to the host before completion:

• cudaMallocAsync(...,stream)
• cudaFreeAsync(...,stream)
• cudaMemcpyAsync(...,stream)
• cudaMemcpy2DAsync(...,stream)
• cudaMemsetAsync(...,stream)

• The extra argument stream is of type cudaStream_t (the default
stream, 0, can be omitted), and is created by the function
cudaStreamCreate

François Gelis, September 2024 49

Asynchronous functions

• A stream is a pipeline of CUDA instructions

• Commands issued in distinct non-zero streams may overlap,
while commands in the same stream remain ordered

• As long as subsequent commands using this memory are issued
in the same stream, there is no risk of using unexisting memory
(even if cudaMallocAsync returns before the memory is
allocated)

• CAUTION: trying to access memory allocated within one stream
from another stream leads to undefined behavior, as the CUDA
execution provides no guarantee for the ordering of events in
different streams

François Gelis, September 2024 50

Inter-Device copies

• To allow the current device (the one set by the last call to
cudaSetDevice()) to directly access data on another device, one
should call
cudaDeviceEnablePeerAccess (device_id , 0) ;

• The second argument should be 0 (the documentation says that
it is reserved for future evolutions of this function)

• CAUTION: This call grants a unidirectional permission (for the
current device to access the memory of device_id). To have
bidirectional access, another call to
cudaDeviceEnablePeerAccess must be done with the roles of
the two devices swapped

François Gelis, September 2024 51

Inter-Device copies

• To perform the actual device-to-device copy, one should use
cudaMemcpyPeer (dest inat ion , d_device , source , s_device , s i ze) ;
cudaMemcpyPeerAsync (dest inat ion , d_device , source , s_device , s ize , stream) ;

• The semantics of these functions is the same as that of the
ordinary ones, but they need extra arguments telling the source
and destination devices. They do not need a type_of_transfer
because it is implicit in this context

• The source and destination pointers must have been allocated
on the respective devices

• The two devices may be the same

François Gelis, September 2024 52

Unified Memory

• Some devices can share a unified memory address space with
other devices and with the host. Check this capability with:
cudaDeviceProp prop ;
cudaGetDeviceProperties (&prop , device) ;
i f (prop . uni f iedAddressing = = 1) {
// Device supports un i f i ed addressing
}

• When the device has this capability, one may use
cudaMemcpy() with the transfer type set to cudaMemcpyDefault

• To find where the memory associated to a pointer resides, use:
cudaPointerAt t r ibutes a t t r ;
cudaPointerGetAttr ibutes (& at t r , pointer) ;

• attr.cudaMemoryType can be cudaMemoryTypeHost or
cudaMemoryTypeDevice

• attr.device tells on which device the memory resides

François Gelis, September 2024 53

Unified Memory

• For host allocations to work with unified memory, they should
be done with the CUDA function cudaMallocHost() instead of
the host’s malloc().
Host memory allocated in this fashion is directly accessible by
GPUs. One can pass a host pointer directly to a CUDA kernel

• With a unified address space, after calling
cudaDeviceEnablePeerAccess() appropriately, the memory
allocated on a device is directly accessible by the other devices

• Memory allocated by cudaMalloc() or cudaMallocHost() remains
resident on the device/host where the pointer was allocated. It
is copied multiple times if requested multiple times.
Memory allocated by cudaMallocManaged() may become
resident of another device/host, and does not need to be
copied multiple times when reused

François Gelis, September 2024 54

CUDA kernels

François Gelis, September 2024 54

What is a CUDA kernel?

• A CUDA kernel is a special type of function that maps (in
parallel) a certain action onto the entries of an array

• A kernel runs on a single GPU, but its threads may be split
across various streams multiprocessors (SM)

• The threads of a kernel are grouped in blocks (whose size is
chosen by the programmer), and all threads in a block are
guaranteed to run on the same SM (and thus see the same L1
cache, that they can use as shared memory to communicate)

• Threads in the same block can be synchronized easily, but not
threads in different blocks

François Gelis, September 2024 55

CUDA kernel declaration

• CUDA kernel declaration:
__global__ kernel_name (kernel arguments) {
// perform some usefu l act ion here

}

• Kernel arguments can be scalars, structures, pointers
• The combined size of all arguments should be less than 4096

Bytes (32764 Bytes on recent GPUs)

• Each thread runs the kernel (the number of threads is chosen
when the kernel is called)

• Inside the kernel, the following variables are predefined:
• threadIdx.{x,y,z} : thread index within a block
• blockIdx.{x,y,z} : block index
• blockDim.{x,y,z} : block dimensions
• gridDim.{x,y,z} : number of blocks

François Gelis, September 2024 56

CUDA kernel declaration

• In general, a multidimensional grid of threads is used as a
natural way to map into a multidimensional array, as in
__global__ MatrixAdd (f l oa t A [N] [N] , f l oa t B[N] [N] , f l oa t C [N] [N]) {
i n t i = blockIdx . x * blockDim . x + threadIdx . x ;
i n t j = blockIdx . y * blockDim . y + threadIdx . y ;

C [i] [j] = A [i] [j] + B [i] [j] ;
}

(a multidimensional grid makes little sense to access 1-d data)

• Size limits:
• Max number of threads per block: 1024
• Max number of blocks per kernel: 231 − 1

• Max number of blocks in the y and z directions: 65535

• NOTE: blocks smaller than 32 threads are not useful, because 32

is the smallest group of threads that a GPU can schedule

François Gelis, September 2024 57

Kernel launch

• The general syntax for launching a CUDA kernel is
kernel_name<<<blocks , threads_per_block , shared_mem , stream > > >(kernel arguments) ;

• The arguments of the kernel are between the parenthesis, like
for a normal function

• The parameters within <<< · · · >>> define other details of the
parallel task:

• 1st argument: number of blocks. Type: int or dim3, as in
i n t blocks = 5 1 2 ; // 512 x 1 x 1
dim3 blocks (5 1 2) ; // 512 x 1 x 1
dim3 blocks (5 1 2 , 5 1 2) ; // 512 x 512 x 1
dim3 blocks (5 1 2 , 5 1 2 , 1 2 8) ; // 512 x 512 x 128

• 2nd argument: number of threads per block, for the x, y and z

directions. Type: int or dim3
• 3rd argument: amount of shared memory per block (in bytes)
used by the kernel (optional; 0 if not present)

• 4th argument: stream in which the kernel is launched (optional;
default stream if not present). Note: if a stream is indicated, then
the shared memory must also be present (set to 0 if not used)

François Gelis, September 2024 58

Kernel launch

• Hierarchy of threads in a CUDA kernel:
• The set of all threads forms a grid
• The grid is divided in blocks, whose size and number is defined
when launching the kernel. All threads in the same block run on
the same SM, and see the same shared memory (not true for
threads that belong to different blocks)

• The blocks do not all run simultaneously. One should not assume
a particular ordering for the time at which the various blocks run

• A block is further divided into groups of 32 threads, called warps.
This is mostly a hardware notion (all threads in a warp execute
the same instruction), but there are a few functions to do
manipulations at warp level

• Simplest setup: the block size is a multiple of 32, and the size of
the array to process is a multiple of the block size (otherwise, a
test must be included inside the kernel to avoid
reading/writing beyond the end of the array)

François Gelis, September 2024 59

Divergent code

• A CUDA code is called divergent when the threads in a warp do
not execute the same instructions. Example:
__device__ f l oa t f0 (f l oa t x , f l oa t y) {
return s i n f (x*x+y*y) ;

}

[+ f1 , . . . , f 7 : seven other funct ions of equivalent complexity]

__global__ void non_divergent_kernel (f l oa t *a , f l oa t *b) {
i n t id = blockIdx . x * blockDim . x + threadIdx . x ;
a [id] = f0 (a [id] , b [id]) ;

}

__global__ void divergent_kernel (f l oa t *a , f l oa t *b) {
i n t id = blockIdx . x * blockDim . x + threadIdx . x ;

switch (threadIdx . x % 8) {
case 0:
a [id] = f0 (a [id] , b [id]) ;
break ;
[. . .]

}
}

François Gelis, September 2024 60

Divergent code

• Effect of code divergence on the running time:
non divergent code : 4 . 6 1 seconds
divergent code : 8 .61 seconds

• The running time is not multiplied by 8 in this example, because
not all instructions are different between the threads (and the
compiler is smart enough to see the common instructions)

• Sometimes, the compiler is able to know the outcome of a test
at compilation time

• The compiler also tries to rearrange the code to avoid branches

• Best practice: avoid branches in kernel code

François Gelis, September 2024 61

Lecture III

François Gelis, September 2024 61

Outline

• Architecture of GPUs
• What tasks are GPUs good at?
• Overview of CUDA

• Diagnosing errors
• Memory management (allocation, copy)
• CUDA kernels

• Streams, Synchronization
• Shared memory
• Reduction operations

• Memory performance tuning
• How many threads?
• CUDA libraries for common tasks: cuFFT, cuBLAS, ...

François Gelis, September 2024 62

Streams, Synchronization

François Gelis, September 2024 62

Default stream

• All CUDA commands are queued in a pipeline, and are executed
in order (First In First Out). For instance, if a kernel launch
follows a memory copy, this queuing mechanism ensures that
the data has been effectively copied before doing computations
with it in the kernel

• Such a queue of CUDA tasks is called a stream

• By default, there is a single stream per GPU, called the default
stream (or stream 0). Tasks in the default streams of distinct
GPUs are not synchronized

• It is possible to have one default stream per GPU and
per host thread. This behavior is obtained by giving the option
–default-stream=per-thread to nvcc

François Gelis, September 2024 63

Default stream

GPU 0

GPU 1

• CUDA only orders tasks that belong to the same stream

• If a task on GPU 1 depends on the completion of a task on GPU
0, a stronger synchronization is needed

François Gelis, September 2024 64

CUDA events

• CUDA events are a tool to enable a host thread to wait for
certain tasks to complete

• Typical usage:
cudaEvent_t event ;
cudaEventCreate (&event) ;

[A : sequence of CUDA commands]
cudaEventRecord (event , stream) ;
[. . .]
cudaEventSynchronize (event) ;
[B : CUDA commands that should wait un t i l A has completed]

• cudaEventRecord(event,stream) records in event all the
pending tasks in stream on the current GPU

• cudaEventSynchronize(event) waits until all the tasks recorded
in event have finished

• NOTE: if A and B happen in the same stream, this is not
necessary (the stream ordering will do exactly this)

François Gelis, September 2024 65

CUDA events

• CUDA events can also be used to time some tasks:
cudaEvent_t s tar t , stop ;
f l oa t duration ;
cudaEventCreate (& s t a r t) ;
cudaEventCreate (&stop) ;

cudaEventRecord (s tar t , 0) ;
[do some s t u f f]
cudaEventRecord (stop , 0) ;
cudaEventSynchronize (stop) ;
cudaEventElapsedTime(&duration , s tar t , stop) ;

• After this, the variable duration contains the time elapsed
between start and stop, in milliseconds

• NOTE: for memory bound tasks, a better measure of the code
efficiency is the effective memory bandwidth:

10−6 ∗ (reads+ writes [Bytes])/(duration [msec]) GB/sec

François Gelis, September 2024 66

User created streams

• For situations where one has several independent sets of tasks
(i.e., tasks from different sets are independent, but tasks in the
same set are dependent), it is possible to create additional
streams

• Syntax to create a new stream on the current GPU:
cudaStream_t stream ;
cudaStreamCreate (&stream) ;

• The variable stream can then be used in all the ...Async
commands that take a stream as argument, to indicate that the
command should be issued in that stream

François Gelis, September 2024 67

User created streams

• When using only the default stream, multiple kernels cannot
overlap, even if the resources necessary for them would be
available. Also, kernels and memory operations cannot overlap

• When issued in different streams, two kernels can be executed
simultaneously (if the GPU has enough resources for both)

• Even in situations where the resources are insufficient for
running two concurrent kernels, memory operations can
overlap with kernel executions, if they are issued in different
streams

François Gelis, September 2024 68

Rules of stream synchronization

• The legacy default stream synchronizes with user created
streams on the same GPU. For instance, if one issues
kernel_1 < < <1 ,N,0 , s > > > (. . .) ; // kernel 1 launched in stream s
kernel_2 < < <1 ,N> > > (. . .) ; // kernel 2 launched in defaul t stream
kernel_3 < < <1 ,N,0 , s > > > (. . .) ; // kernel 3 launched in stream s

kernel_2 will block until kernel_1 has finished, and kernel_3 will
block until kernel_2 has finished

• The per-thread default streams do not synchronize with user
created streams (they behave like one of them)

• User created streams do not synchronize with one another

• cudaStreamSynchronize(stream) causes the calling host thread
to block until all activity in stream has finished

François Gelis, September 2024 69

Synchronization among threads

• There are situations where one would like to wait until certain
threads in the same kernel have reached a certain point in the
calculation, before continuing

• NOTE: all threads in a warp execute the same instruction. They
should be always synchronized

• __syncthreads() halts the execution until all threads in a block
have reached this point

• It can be used for instance to make sure that all threads have
written to shared memory, before reading from it

• CAUTION: __syncthreads() should not be called within a
conditional branch unless one is certain the condition will be
true for all threads in the block. Otherwise, certain threads will
never reach the __syncthreads() and the program will hang
indefinitely

François Gelis, September 2024 70

Synchronization among threads

• Block-level synchronization functions:

• void __syncthreads():
halts until all threads in the block have reached it

• int __syncthreads_count(int condition):
halts until all threads in the block have reached it, and returns
the number of threads for which condition is true

• int __syncthreads_and(int condition):
same, and returns non-zero if condition is true in all threads

• int __syncthreads_or(int condition):
same, and returns non-zero if condition is true in at least one
thread

François Gelis, September 2024 71

Synchronization among threads

• Warp-level synchronization:
• void __syncwarp(unsigned mask): halts until all threads
designated by mask have reached it. mask is a 32-bit unsigned
integer, and participating threads are indicated by setting the
corresponding bit to 1 (for all threads, mask=0xffffffff)

• Warp-level ”vote” functions (do not imply a memory barrier):
• int __all_sync(unsigned mask, condition): returns true if condition
is true in all threads designated by mask

• int __any_sync(unsigned mask, condition): returns true if
condition is true in at least one thread designated by mask

• int __ballot_sync(unsigned mask, condition): returns an integer
whose bits equal to 1 indicate the threads designated by mask for
which condition is true

François Gelis, September 2024 72

Synchronization among threads

• The synchronization of pools of threads larger than a block is
problematic, since CUDA does not even promise they run
simultaneously on the GPU

• When kernel-wide synchronization is necessary, the easiest
method is to split the kernel in two, at the place where all
threads should synchronize (the termination of a kernel is a
point where all threads effectively converge)

François Gelis, September 2024 73

Shared memory

François Gelis, September 2024 73

What is shared memory?

L1 L1 L1 L1 L1shm shm shm shm shm

L2

Global Memory

• Shared Mem = part of the L1 cache that can be managed by the program

• Since all threads in a block run on the same SM, they see the same
shared memory. Shared memory can be used for communication
between these threads

François Gelis, September 2024 74

How to declare shared memory?

• Shared memory is declared for each kernel independently
• Its amount is specified per block (but is the same for all blocks)
• Two ways to declare it:

• Static declaration inside the kernel definition:
__global__ kernel_name (arguments) {
__shared__ f l oa t A [N] ; // s t a t i c a l l y declared s i z e
[. . .]

}

• Dynamic declaration in the kernel call:
__global__ kernel_name (arguments) {
extern __shared__ f l oa t A [] ; // unspec i f ied s i z e
[. . .]

}

kernel_name<<<blocks , blocksize ,N*s i zeof (f l oa t) , stream > > >(arguments) ;

• Lifetime = until the block finishes

François Gelis, September 2024 75

How to declare shared memory?

• If the size of shared memory is known at compile time, use a
static declaration

• When the amount of shared memory is not known at compile
time, or should change in various kernel launches, use a
dynamic declaration

• After it has been declared one way or the other, the use of
shared memory is identical in both cases

• CAUTION: asking too much shared memory limits the number of
blocks that can run simultaneously on a given SM

François Gelis, September 2024 76

Shared memory properties

• On the same chip as the computing cores: very fast access. Can
be used to fasten certain algorithms

• Size limit: 48 kBytes/SM

• Coherent for all threads that belong to the same block
• Writes to shared memory done by different threads are not
guaranteed to be completed all at the same time. A memory
fence is mandatory before one can safely read (when the writes
and the reads are done by different threads):
[wr i tes]
__syncthreads () ;
[reads]

__syncthreads() forces all threads in the block to halt until all
have reached this function (this call should not be placed inside
a conditional branch that may not be reached by all threads)

François Gelis, September 2024 77

Shared memory bank conflicts

• For maximizing throughput, shared memory is organized in 32

“banks” (hardware units), each able to serve one 4-byte request
during the same memory operation

bank 0 bank 1 bank 2 bank 3 bank 31

François Gelis, September 2024 78

Shared memory bank conflicts

• In shared memory, the successive entries of an array A[i] of
floats are stored in successive memory banks

bank 0

A[0]

A[32]

A[64]

A[96]

A[128]

A[160]

bank 1

A[1]

A[33]

A[65]

A[97]

A[129]

A[161]

bank 2

A[2]

A[34]

A[66]

A[98]

A[130]

A[162]

bank 3

A[3]

A[35]

A[67]

A[99]

A[131]

A[163]

bank 31

A[31]

A[63]

A[95]

A[127]

A[159]

A[191]

• 32 consecutive entries requested by the 32 threads in a warp
can thus be retrieved in a single operation

• This also works for non consecutive entries, as long as they are
pulled from 32 distinct banks

François Gelis, September 2024 79

Shared memory bank conflicts

• CAUTION: concurrent requests to the same memory bank
(called a bank conflict) are serialized (except when several
threads request exactly the same address)

• 32 successive threads accessing A[0], A[1], A[2], A[3], · · · have
their requests fulfilled in the same memory read

• 32 successive threads accessing A[0], A[32], A[64], A[96], · · ·
need 32 distinct memory reads to have their requests fulfilled

• In order to maximize throughput, one should think about the
access pattern to shared memory, and modify the code to
minimize bank conflicts (example: 32× 32 matrix, arranged in
row-major order. Accessing a row of this matrix is fast, but
accessing a column is slow)

François Gelis, September 2024 80

Reduction operations

François Gelis, September 2024 80

What is a reduction?

• Consider a large array A[i] with N elements. A typical example
of reduction is to compute the sum of all its elements

S ≡
N−1∑
i=0

A[i]

(additions may be replaced by some other arithmetic operation,
or by a logical operator – the operation must be associative)

• The naive implementation of this is not parallel, since all the
additions are done sequentially (there are N− 1 additions)

François Gelis, September 2024 81

Main danger with multithreaded reductions

• Each thread does a sequence of 3 actions:

read
sum

→ addA[i]
to sum

→ write
updated sum

• With two threads, one could have:

Tread 1 : read
sum

→ addA[i1]
to sum

→ write
updated sum

Tread 2 : read
sum

→ addA[i2]
to sum

→ write
updated sum

i.e., Thread 2 reads the value of sum before Thread 1 has
finished its update (and therefore Thread 2 gets the old value,
and its update will overwrite that of Thread 1)

• To avoid this, the [read-add-write] sequence should be treated
as a single insecable instruction

François Gelis, September 2024 82

Naive CUDA reduction (don’t do this!)

• The naive implementation uses atomicAdd() to make sure
threads do not step on each other while updating the sum:

__global__ void grid_sum_naive (const f loa t *A , f l oa t *sum) {
i n t id = blockIdx . x * blockDim . x + threadIdx . x ;
atomicAdd (sum , A [id]) ;

}

• Timings (for 512× 106 elements, repeated 256 times, on my
laptop – host version uses 6 OpenMP threads):

reduction on HOST : 32 .03 seconds , sum= 7616.225586
naive reduction on GPU : 283 .42 seconds , sum= 7618 .101074

• This naive implementation just serializes the 512× 106

additions =⇒ very slow

François Gelis, September 2024 83

Optimal parallel reduction

• Assume N = 2p

• Divide the array into 2p−1 pairs of elements

• Sum the two elements in each pair, in parallel =⇒ 1 step to do
2p−1 partial sums

• Sum pairwise these partials sums =⇒ 1 step to do 2p−2 partial
sums

• · · ·

• In total, there are p steps =⇒ p = log2(N) steps to sum N

elements (this is the lower limit; no algorithm can beat this)

• NOTE: since CUDA threads in different blocks cannot
communicate, this level of parallelism is not achievable on
GPUs

François Gelis, September 2024 84

A (partly) parallel reduction in CUDA

• Assign one thread per entry of the array

• Do in parallel partial reductions over each warp
(warp = group of 32 threads)

• Do in parallel partial reductions over each block
(using shared memory)

• Sum over all blocks (sequential)

François Gelis, September 2024 85

Warp-level reduction

• Function called by the 32 threads in the warp, with the value it
owns. The function returns the warp-level sum in thread 0:
__ in l ine__ __device__ f l oa t warpReduceSum (f l oa t val) {
for (i n t o f f se t = 1 6 ; o f f se t > 0 ; o f f se t >>= 1)
va l += __shfl_down_sync (0 x f f f f f f f f , val , o f f se t) ;

return val ;
}

• Illustration of the last 3 steps:

(for 32 threads, there are 5 steps: offset= 16, 8, 4, 2, 1)

François Gelis, September 2024 86

Block-level reduction

• Function called by all threads in block:
__ in l ine__ __device__ f l oa t blockReduceSum (f l oa t val , i n t t i d) {
s t a t i c __shared__ f l oa t temp [3 2] ; // Shared mem for 32 pa r t i a l sums (32 = max warps)
i n t lane = t i d % 32 ; // thread id with in the warp
i n t wid = t i d / 32 ; // warp id

val = warpReduceSum (val) ; // Each warp performs pa r t i a l reduct ion
i f (lane ==0) temp [wid]= val ; // thread 0 of each warp wr i tes warp− l e v e l sum
__syncthreads () ; // Wait fo r a l l pa r t i a l reduct ions to complete

i f (wid==0) { // Done only by warp 0
val = (t i d < BLOCKSIZE / 32) ? temp [lane] : 0.0 f ;
va l = warpReduceSum (val) ; // Ca l l again warp− reduct ion to sum over the blocks

}

return val ;
}

• Computes the block-level sum in 10 iterations (note: 210 = 1024)

• __syncthreads() between writes and reads to shared memory

• Returns the block-level sum in thread 0

François Gelis, September 2024 87

Full-grid reduction

• In order to sum the elements of an array (whose size is a
multiple of 1024), one should use the following kernel:
__global__ void grid_sum (const f loa t *A , f l oa t *sum) {
i n t id = blockIdx . x * blockDim . x + threadIdx . x ;
f l oa t tmp = A [id] ;
__syncwarp () ;
tmp = blockReduceSum (tmp , threadIdx . x) ;
i f (threadIdx . x ==0) atomicAdd (sum , tmp) ;

}
[. . . .]
cudaMemset(&sum,0 , s i zeof (f l oa t)) ;
grid_sum<<<SIZE /1024 ,1024 > > >(A,&sum) ;

• atomicAdd(a, b) adds b to a in a thread-safe way (the
read-add-store sequence cannot interfere with other threads
trying to do the same thing)

• When this kernel terminates, the variable sum (on the GPU)
contains the sum of all elements of A

• Number of steps: (SIZE/1024) ∗ 10 instead of SIZE− 1

François Gelis, September 2024 88

Example: sum of 512.106 floats

• Sum of the elements of an array of 229 floats (2 GBytes),
repeated 256 times

• Parallelized with 6 OpenMP threads on host

• Parallelized with 229 threads in CUDA, with blocksize=1024

• Timings (on my laptop):

reduction on HOST : 32 .03 seconds , sum= 7616.225586
naive reduction on GPU : 283 .42 seconds , sum= 7618 .101074
reduction on GPU : 8.04 seconds , sum= 7616 .404297

• Speedup by a factor ∼ 4 compared to HOST
• Relative difference ∼ 1.7× 10−5 (after 512 million additions)

François Gelis, September 2024 89

Reduction for the logical AND

• This method is applicable to other types of reduction. For
instance, finding if a certain condition is true in all threads
corresponds to the logical AND of the conditions in each thread

• Warp-level reduction:

__ in l ine__ __device__ unsigned warpReduceAND (unsigned val) {
for (i n t o f f se t = 1 6 ; o f f se t > 0 ; o f f se t >>= 1)
va l = val && __shfl_down_sync (0 x f f f f f f f f , val , o f f se t) ;

return val ;
}

François Gelis, September 2024 90

Reduction for the logical AND

• Block-level reduction:

__ in l ine__ __device__ unsigned blockReduceAND (unsigned val , i n t t i d) {
s t a t i c __shared__ unsigned tmp [3 2] ;
i n t lane = t i d % 32 ; // thread id with in the warp
i n t wid = t i d / 32 ; // warp id

val = warpReduceAND (val) ; // Each warp performs pa r t i a l reduct ion
i f (lane ==0) tmp [wid]= val ; // thread 0 of each warp wr i tes warp− l e v e l sum
__syncthreads () ; // Wait fo r a l l pa r t i a l reduct ions to complete

i f (wid==0) { // Done only by warp 0
val = (t i d < BLOCKSIZE / 32) ? tmp [lane] : 1 ;
va l = warpReduceAND (val) ; // Ca l l again warp− reduct ion to sum over the blocks

}

return val ;
}

François Gelis, September 2024 91

Reduction for the logical AND

• Full grid reduction:

__global__ void grid_AND (const unsigned *A , unsigned *and) {
i n t id = blockIdx . x * blockDim . x + threadIdx . x ;
unsigned tmp = A [id] ;
__syncwarp () ;
tmp = blockReduceAND (tmp , threadIdx . x) ;
i f (threadIdx . x ==0) atomicAND (sum , tmp) ;

}
[. . . .]
unsigned h_and = 1 ; // 1 i s the neutral value for AND
cudaMemcpy(&and,&h_and , s i zeof (unsigned)) ;
grid_sum<<<SIZE /1024 ,1024 > > >(A,&and) ;

François Gelis, September 2024 92

Lecture IV

François Gelis, September 2024 92

Outline

• Architecture of GPUs
• What tasks are GPUs good at?
• Overview of CUDA

• Diagnosing errors
• Memory management (allocation, copy)
• CUDA kernels

• Streams, Synchronization
• Shared memory
• Reduction operations

• Memory performance tuning
• How many threads?
• CUDA libraries for common tasks: cuFFT, cuBLAS, ...

François Gelis, September 2024 93

Memory performance tuning

François Gelis, September 2024 93

Pointer aliasing

• In C/C++, pointers to variables of compatible types may alias,
i.e., point to the same (or overlapping) areas in memory

• Consider a function, or CUDA kernel, declared as
void function_name (f l oa t *a , f l oa t *b , f l oa t *c)
that contains the following instructions
c [0] = a [0] + b [0] ;
c [1] = a [0] + b [1] ;
[. . .]
c [9] = a [0] + b [0] ;

• If the pointer c refers to memory that overlaps with a or b,
writes to c[·] can in fact modify the content a[·] or b[·]

• When aliasing is possible, the compiler cannot reuse data
previously loaded from memory, nor the result of seemingly
identical sub-expressions. It must reload data from memory
and recompute these expressions every time

François Gelis, September 2024 94

Pointer aliasing

• The compiler assumes that the programmer obeys the aliasing
rules strictly (if the programmer does not, the program may
misbehave)

• It is illegal to access some data via a pointer to an incompatible
type. Doing so leads to undefined results, as in
include < std io . h>

i n t func (f l oa t * f , i n t * i) {
* i = 1 ; // the compiler can change the order of the assignments
* f =0 .0 ; // because the two pointers r e f e r to d i f f e r en t types
return * i ;

}

void main () {
i n t x = 0;
x = func ((f l oa t *)(&x) ,& x) ; // the pointers r e f e r to the same memory ! !
p r i n t f (” x = %d\n” , x) ; // pr in t s 0 without opt imizat ion and 1 with −O2

}

• Exception: char* can alias with any other pointer

François Gelis, September 2024 95

Pointer aliasing: using __restrict__

• One may tell the compiler that the pointers DO NOT alias by
modifying the function declaration as follows
void function_name (f l oa t * __ res t r i c t __ a ,

f l oa t * __ res t r i c t __ b ,
f l oa t * __ res t r i c t __ c)

• __restrict__ is a promise that the programmer makes to the
compiler: the data corresponding to a pointer decorated with
__restrict__ is not read/written via another pointer

CAUTION: Failure to honor this promise may lead to a
malfunctioning program

• When the pointers are qualified with __restrict__, the compiler
is free to reuse sub-expressions and to store previously loaded
data in registers

François Gelis, September 2024 96

Coalesced memory access

• Thanks to the way the cache works, 32 reads/writes to 32

successive addresses in memory are done in a single operation
(these accesses are said to have coalesced)

• This pattern of access to global memory is the one that gives
the highest throughput

• The GPU will satisfy the reads/writes performed by the threads
in a warp in as few memory transactions as possible

• The worst situation is that of a totally random pattern of
memory access, or reading/writing data with large jumps

François Gelis, September 2024 97

Coalesced memory access: effect of a stride on the bandwidth

• CUDA kernel that copies data from an array into another array,
with a gap between the elements that are copied:
__global__ void copy (f l oa t *out , const f loa t * in , i n t s t r i de) {
i n t i = blockIdx . x * blockDim . x + s t r i de * threadIdx . x ;
out [i] = in [i] ;

}
[. . .]
i n t s t r i de = 1 ;
copy<<<nx/256− st r ide ,256 > > >(d_out , d_in , s t r i de) ;

• Copies one float every stride from in[] to out[]

• Measure the time to copy and infer the bandwidth

• Vary stride from 1 to 256, and plot bandwidth versus stride

François Gelis, September 2024 98

Coalesced memory access: effect of a stride on the bandwidth

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250

b
a
n
d
w

id
th

:
G

B
/s

e
c

stride: # of floats

• A stride between successive reads/writes implies that all threads in a
warp cannot be satisfied with a single cache line

• Coalesced memory operations should be the goal for any
memory-bound computation

François Gelis, September 2024 99

Coalesced memory access – Example: matrix transpose

• We want to compute the transpose of a large matrix
• The width× width matrix is decomposed in square tiles:

TILE_DIM

BLOCK_ROWS

TILE_DIM

x = blockIdx.x * TILE_DIM

y = blockIdx.y * TILE_DIM

width

width

François Gelis, September 2024 100

Coalesced memory access – Example: matrix transpose

• Each block of threads handles one tile
• Naive CUDA implementation:
__global__ void transposeNaive (f l oa t *odata , const f loa t * idata) {
i n t x = blockIdx . x * TILE_DIM + threadIdx . x ;
i n t y = blockIdx . y * TILE_DIM + threadIdx . y ;
i n t width = gridDim . x * TILE_DIM ;

for (i n t j = 0 ; j < TILE_DIM ; j += BLOCK_ROWS)
odata [x*width + (y+ j)] = idata [(y+ j)*width + x] ;

}

• Matrix transpose is a memory bound operation. To measure
performance, we compare the effective bandwidth to that of a
simple matrix copy:

pla in copy : 1 59 . 5 7 GB/sec
shared memory copy : 168.69 GB/sec

naive transpose : 3 5 . 1 7 GB/sec

Main problem: in the transpose, one of the matrices is accessed
with rows and columns swapped =⇒ big gaps between the
accessed elements =⇒ uncoalesced accesses

François Gelis, September 2024 101

Coalesced memory access – Example: matrix transpose

• Use an intermediate buffer in shared memory, so that all
reads/writes to global memory have coalesced:

tile
shared

memory
transposed

tile

NOTE: this works if reading along the columns in shared
memory is as fast as writing along the rows

François Gelis, September 2024 102

Coalesced memory access – Example: matrix transpose

• First copy the elements of a tile to an array in shared memory,
following rows to benefit from coalesced reads

• Use this array in shared memory to perform the transpose

__global__ void transposeCoalesced (f l oa t *odata , const f loa t * idata) {
__shared__ f l oa t t i l e [TILE_DIM] [TILE_DIM] ;

i n t x = blockIdx . x * TILE_DIM + threadIdx . x ;
i n t y = blockIdx . y * TILE_DIM + threadIdx . y ;
i n t width = gridDim . x * TILE_DIM ;

for (i n t j = 0 ; j < TILE_DIM ; j += BLOCK_ROWS)
t i l e [threadIdx . y+ j] [threadIdx . x] = idata [(y+ j)*width + x] ; // coalesced reads to idata

__syncthreads () ;

x = blockIdx . y * TILE_DIM + threadIdx . x ;
y = blockIdx . x * TILE_DIM + threadIdx . y ;

for (i n t j = 0 ; j < TILE_DIM ; j += BLOCK_ROWS)
odata [(y+ j)*width + x] = t i l e [threadIdx . x] [threadIdx . y + j] ; // coalesced wr i tes to odata

}

François Gelis, September 2024 103

Shared memory bank conflicts – Example: matrix transpose

• Significant improvement, but not yet on par with plain copy:
copy : 1 59 . 5 7 GB/sec

shared memory copy : 168.69 GB/sec
naive transpose : 3 5 . 1 7 GB/sec

coalesced transpose : 65 .53 GB/sec

• Penalty when concurrent reads happen in the same bank of
shared memory

• In this implementation, TILE_DIM=32. Therefore, all elements in
the same column of the tile fall in the same bank!

François Gelis, September 2024 104

Shared memory bank conflicts – Example: matrix transpose

• tile[32][32] (color shades indicate memory banks):

François Gelis, September 2024 105

Shared memory bank conflicts – Example: matrix transpose

• Easy fix: increase one dimension of the shared array from
TILE_DIM to TILE_DIM+1:

__global__ void transposeNoBankConfl icts (f l oa t *odata , const f loa t * idata) {
__shared__ f l oa t t i l e [TILE_DIM] [TILE_DIM + 1] ; // NOTE the +1 (only change)

i n t x = blockIdx . x * TILE_DIM + threadIdx . x ;
i n t y = blockIdx . y * TILE_DIM + threadIdx . y ;
i n t width = gridDim . x * TILE_DIM ;

for (i n t j = 0 ; j < TILE_DIM ; j += BLOCK_ROWS)
t i l e [threadIdx . y+ j] [threadIdx . x] = idata [(y+ j)*width + x] ;

__syncthreads () ;

x = blockIdx . y * TILE_DIM + threadIdx . x ;
y = blockIdx . x * TILE_DIM + threadIdx . y ;

for (i n t j = 0 ; j < TILE_DIM ; j += BLOCK_ROWS)
odata [(y+ j)*width + x] = t i l e [threadIdx . x] [threadIdx . y + j] ;

}

François Gelis, September 2024 106

Shared memory bank conflicts – Example: matrix transpose

• tile[32][33] (color shades indicate memory banks):

NOTE: the 33rd (last) column is not used

François Gelis, September 2024 107

Shared memory bank conflicts – Example: matrix transpose

• Now transpose bandwidth comparable with plain copy:
copy : 1 59 . 5 7 GB/sec

shared memory copy : 168.69 GB/sec
naive transpose : 3 5 . 1 7 GB/sec

coalesced transpose : 65 .53 GB/sec
con f l i c t − f ree transpose : 164 .70 GB/sec

• Summary:
• Aim at sequential reads/writes in global memory, with no strides
• Use shared memory as intermediate buffer to rearrange accesses
to global memory

• Pay attention to bank conflicts when using shared memory

François Gelis, September 2024 108

How many threads?

François Gelis, September 2024 108

Global memory latency

• Latency between a request of data in global memory and the
moment this data becomes available to the computing cores ∼
500 clock cycles

• How does a GPU cope with this?

The GPU maintains several lists of threads:
• Threads that have the operands ready (i.e., loaded in registers) for
their next instruction

• Threads that have their operands “in flight” (i.e., the operands
have been requested to memory, but have not yet arrived)

• Threads whose next operands have not yet been requested

• The GPU prefetches the operands long before they will be used,
in order to hide the memory latency

François Gelis, September 2024 109

Global memory latency

• GPUs have zero overhead for switching the active threads, and
schedule threads so that the computing cores are always busy

• Long latency instructions (e.g., memory loads) are scheduled as
early as possible

• For this mechanism to work, there should be enough threads so
that, at any given time, the number of threads ready to run is
comparable to the number of computing cores

• Recommendations:
• not too large blocksize (128-256 threads) so that many blocks are
able to run concurrently

• have several hundred blocks at a minimum
• at least ∼ 10000 threads in total
• help the compiler reshuffle instructions by using __restrict__

François Gelis, September 2024 110

CUDA libraries

François Gelis, September 2024 110

cuBLAS

François Gelis, September 2024 110

What is BLAS?

• BLAS = Basic Linear Algebra Subprograms

• BLAS is a specification that defines a set of low-level routines
for performing common linear algebra operations such as
vector addition, scalar multiplication, dot products, linear
combinations, and matrix multiplication

• De facto standard for the underlying linear algebra
manipulations in many softwares

• Many implementations of BLAS exist, in principle
interchangeable

François Gelis, September 2024 111

BLAS – performance considerations

• BLAS routines often perform identical operations on the entries
of large arrays =⇒ potential for improvement on GPUs

• Varying levels of computational intensity depending on the
type of BLAS routines:

• Vector-vector, matrix-vector:
(computations)/(memory accesses) ∼ O(1)

• Matrix-matrix:
(computations)/(memory accesses) ∼ O(N)

=⇒ different optimization strategies needed for both cases

François Gelis, September 2024 112

cuBLAS

• cuBLAS is a GPU-accelerated library that implements the BLAS
routines

• The cuBLAS library is highly optimized for performance on
NVIDIA GPUs

• May use tensor cores for acceleration of low- and
mixed-precision matrix multiplication

François Gelis, September 2024 113

cuBLAS

François Gelis, September 2024 114

cuBLAS

• Header: #include <cublas_v2.h>

• The application must initialize a handle to the cuBLAS library
context by calling the cublasCreate(&handle) function (handle
is of type cublasHandle_t). This handle is explicitly passed to
every subsequent library function call

• The library is thread safe and its functions can be called from
multiple host threads, even with the same handle. BUT: some
settings are stored in the handle, that should not be changed
concurrently by threads

• cublasSetStream(handle,stream) tells the library to execute in
stream all functions using handle (implicitly: default stream)

François Gelis, September 2024 115

cuBLAS – Example of matrix multiplication

cublasStatus_t cublasSgemm (cublasHandle_t handle ,
cublasOperation_t transA ,
cublasOperation_t transB ,
i n t m, i n t n , i n t k ,
const f loa t *alpha ,
const f loa t *A , i n t lda ,
const f loa t *B , i n t ldb ,
const f loa t *beta ,
f l oa t *C , i n t ldc) ;

• S for single precision (also: H,D,C,Z)
• Performs: C = αTa(A)Tb(B) + βC

• Ta(A) = A if transA = CUBLAS_OP_N, Ta(A) = At if transA =
CUBLAS_OP_T , Ta(A) = A† if transA = CUBLAS_OP_C

• m = number of rows of A and C

• n = number of columns of B and C

• k = number of columns of A and rows of B
• For · · · _OP_N: A = [lda× k] with lda ≥ m; B = [ldb× n] with ldb ≥ k

• C = [ldc× n] with ldc ≥ m

François Gelis, September 2024 116

cuSPARSE

François Gelis, September 2024 116

cuSPARSE

• The cuSPARSE library contains a set of GPU-accelerated basic
linear algebra subroutines used for handling sparse matrices

• Sparse matrices = matrices where a large fraction of the entries
are zero

• Zero entries need not be stored

• Arithmetic with zero entries is trivial

• The cuSPARSE library targets matrices with sparsity ratios in the
range between 70%− 99.9%

François Gelis, September 2024 117

cuSPARSE

• Sparse matrices are encountered when discretizing a local
operator. Example: Laplacian on a 8× 8 grid

François Gelis, September 2024 118

cuSPARSE

• cuSPARSE provides various types of operations:

• Operations between a sparse vector and a dense vector
• Operations between a dense matrix and a sparse vector
• Operations between a sparse matrix and a dense vector
• Operations between a sparse matrix and a dense matrix
• Operations between a sparse matrix and a sparse matrix
• Operations between dense matrices with output a sparse matrix

• cuSPARSE provides several storage formats (for vectors and
matrices, dense or sparse)

François Gelis, September 2024 119

cuSOLVER

François Gelis, September 2024 119

cuSOLVER

• cuSOLVER is a GPU accelerated library for decompositions and
linear system solutions for both dense and sparse matrices

• Based on the cuBLAS and cuSPARSE libraries

• Provides LAPACK-like features:

• common matrix factorizations
• triangular solve routines
• least-squares solver
• eigenvalue solver

François Gelis, September 2024 120

cuFFT

François Gelis, September 2024 120

cuFFT

• cuFFT is a CUDA Fast Fourier Transform library
• Algorithms highly optimized for input sizes that can be written
in the form 2a × 3b × 5c × 7d. Smaller prime factor⇒ better
performance. Powers of two are the fastest

• O(N× logN) for all input sizes N
• Half-, single- and double precision. Smaller formats are faster
• Complex and real-valued input and output
• 1D, 2D and 3D transforms
• Execution of multiple 1D, 2D and 3D transforms simultaneously
• In-place and out-of-place transforms
• FFTW compatible data layout (use cuFFTW for porting code
already using FFTW)

François Gelis, September 2024 121

cuFFT

• Header: #include <cufft.h>

• cufftPlanMany(&handle,· · ·): stores in handle (type:
cufftHandle) the parameters of a sequence of identical Fourier
transforms

• cufftSetStream(handle,stream): sets the stream in which to
perform all calls associated to a given handle

• cufftExecR2C(handle,· · ·): example of a call doing an actual FFT
(with real input and complex output)

François Gelis, September 2024 122

cuRAND

François Gelis, September 2024 122

cuRAND

• The cuRAND library provides facilities for generating
pseudorandom numbers

• A pseudorandom sequence of numbers satisfies most of the
statistical properties of a truly random sequence but is
generated by a deterministic algorithm

• Random numbers can be generated on the device (and stored
in global memory for later use) or on the host CPU

• Provides many different generators

• Can start at some offset in the sequence (to continue a previous
run without overlap in the generated sequence)

• Best performance by generating blocks of random numbers
that are as large as possible (as opposed to many calls that
generate only one random number at a time)

François Gelis, September 2024 123

