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1 Motivation

In recent years there was a huge progress in our understanding and applications of
conformal fields theories in d > 2 dimensions, thanks to the revival of the “conformal
bootstrap” [1]. Much of this work is in the Euclidean space, but also the Minkowski
space makes its appearance and actually has a lot of applications. This raises the

following two puzzles.
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Q1. Why is this useful? 3d CFTs make predictions to second-order thermody-
namic phase transitions in 3d systems (e.g. the 3d Ising model). Majority of these
transitions are observed in Euclidean and at equlibrium (no time). Although one
can imagine that one may formally analytically continue to Minkowski, naively
statistical physicists should not care about this. However, the experience shows that
it is sometimes very useful to have access to Minkowski, as some constraints on CFTs
become much more visible there than in Euclidean. Partial list includes:

e Conformal collider physics [2]

e Lightcone analytic bootstrap [3|[4]

e Constraints from causality and ANEC (averaged null energy condition) [5]
e Lorentzian OPE inversion formula [6] and its consequences (e.g. [7])

Q2. Why s this permitted? When phase transitions are observed on a Euclidean
lattice, CF'T limit is reached in the IR, at long distances. Short distances are dirty,
contaminated with non universal lattice artifacts, and we don’t think much about
them. Yet when we go analytically to Minkowski, one the main questions is what
correlation functions do at coincident points, are they distributions there? Why do
we expect well-behaved short-distance singularities in Minkowski, given that on the
lattice we have no control over coincident points?

In this course I will focus on Q2: under which conditions a Euclidean CF'T gives
rise to a good theory in Minkowski signature (and what we mean by a “good theory”).
This is based on joint work with TAS postdoc Petr Kravchuk and my student Jiaxin
Qiao, which should appear soon.

Note added (April 2021). Results discussed in these lectures have since partly
appeared in [8] and [9].

2 Introduction to Euclidean CFT in d > 2

This section will cover standard material, see my EPFL lectures [10], or Simmons-
Duffin’s TASI lectures [11] for more details. For an extensive review of Euclidean
CFT with an eye towards the bootstrap see [12|. Another highly recommended set
of lectures, with exercises, is [13].

2.1 Conformal invariance

Main objects of study in CFT are correlation functions of local fields (a.k.a. oper-
ators)

(O1(21) Oz(x2) ... Op(xy)), x;€RAL (1)

One considers the group Conf(IR¢) of conformal transformations of R? (more prop-
erly of RYU{oc}). These are transformations y = f(x) which locally look like a
composition of a dilatation and a rotation. This means that the Jacobian matrix
J =0 f*/0x" has the form

St = Q) B, (x) (2)

v
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where Q(z) is the scale factor, and R(z) is an orthogonal matrix, R RT = 1444
Connected component of this group containing Identity is generated, in d > 2, by
translations+rotations, as well as dilatations  — Az and SpecialConformalTrans-
formations:

SCT(a)=IoT(a)ol (3)

where a € R, T(a) is the translation, and I:z — x*/2? is the inversion transfor-
mation. Inversion itself is a conformal transformation but it’s not in the connected
component (R € O(d) but not in SO(d)). Geometrically, one should think of SCT"’s
as transformations which move oo while leaving 0 fixed (just like ordinary transla-
tions move 0 leaving oo fixed).

Exercise: Find Q) and R for inversion. Find the formula for how SCT act on z.

The algebra of conformal transformations is generated by P,, M,,,D,K, (SCT
generators) and is isomorphic to so(d + 1,1). More details will be given later if
necessary.

CF'T correlators are required to be invariant under conformal transformations,
in the following sense. There is a linear transformation rule which acts on fields:

O(z) = m;[O](x), f € Conf(RY) (4)
so that
(O1(21) O2(x2) ... On(n)) = (m[O1] (21) mf[ O] (w2) ... 14 [On] () (5)

As we say “fields transform in a representation of conformal group”. We are especially
interested in representations such that 7;[O](x) is proportional to O(z’) where z'=

fH):
mf[O)(x) o O(f~ ) (6)
Then Eq. (5) just says that correlation functions at two sets of points are propor-

tional to each other. Note that such transformations have a chance to compose nicely
so that mp, = mmy:

m1[Ol(z) o< O((fg)~'a)=0(g7" [ ),
mymglOll(x) o m[O] (f~'a) < O(g™" [~ ). (7)
Prefactor in (6) can be fixed by demanding that the transformations indeed compose

nicely (i.e. that we have a group representation). For scalar fields (i.e. fields without
indices) we have a one parameter family of representations labeled by a number A:

m[O)(x) =Q(2") "2 0(a'), 2'=f""=. (8)

where 2 is determined from f by (2). The meaning of parameter A can be under-
stood by considering rigid dilatations z — Az for which 7[O](z) =A"2O(z/)) and
the invariance equation takes the form:

<01(I1) OQ(IQ) On(ZL‘n)> = >\7A17"'7A" <01(l’1/>\) 02(1’2/)\) On(xn/)\» . (9)

It is then clear that A plays the role of a field’s scaling dimension (each O will have
its own A). In most physical situations we expect that A is a positive real number.
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To generalize the transformation rule for fields with indices (vectors, tensors etc),
recall that for rigid Poincaré transformations x — R x + a we have

milO(x) = p(R) O(z"), (10)

where p is the matrix representing S O(d) which acts on the indices of O. E.g. for
vector representation we have p(R)= R, etc. Then, for conformal transformations
this generalizes as:

mpO)(x) =Q(2") =2 p(R(2")) O(a). (11)

Ezercise: Check that indeed 7, =7 m,.

To summarize, in CFTs we are interested in fields O;, infinite in number, each
of which will be characterized by a scaling dimension A; and an SO(d) irrep p; and
whose correlation functions will be invariant under transformations (11). Such fields
are called “primaries”.

Note that derivatives of primary fields (called descendants) are not themselves
primaries. E.g. transformations rules of v, =09,0 will have the schematic form

vl ~v+ O, (12)

which is not homogeneous in v,. Under rather general conditions one can argue
that any field in CFT is either or a primary or a derivative (of arbitrary order) of a
primary. It is then sufficient to study correlators of primaries (however one cannot
completely forget about descendants since they appear in OPE, see below).

In this course we will only discuss correlation functions of bosonic operators, such
that they transform in tensorial representations of SO(d). In fact we will mostly
focus on scalars. Although not discussed here, there are interesting CFTs which
contain fermionic operators transforming in spinorial representations, with the usual
subtleties associated with double-cover nature of these irreps.

2.2 Constraints on correlation functions

Imposing constraints of conformal invariance in d dimensions, one arrives to inter-
esting conclusions, as first done in 1970 by Polyakov [14]. Two point (2pt) functions
are non-vanishing only among primaries transforming in the same representation (A,
p), in which case its functional form is uniquely determined. By a change of basis
we can assume that “2pt functions are diagonal”, namely that each primary has two
point function only with itself (there are exceptional cases called log-CFTs when
this can’t be done but we will ignore them here). We give here results for scalar and
“spin-1” cases (symmetric traceless tensor of rank [):

N
(O(z) 0(0)) = B (13)
N
<OM1MMZ($) OVIMVZ(O)> = WTlEf4).4Hl7V1.4.Vl(x)’ (14)
T® = L., (2)... L,,(z)—traces, (15)
Ly = 8, — 2000w (16)

22
Conventionally the normalization factor is fixed N =1.
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The tensor T® is an example of a “conformally invariant tensor structure”. Going
to 3pt functions, generically there are no restrictions on Ay, Ay, Az and there are
finitely many tensor structures whose number depends on p; 2 3. Thus 3pt functions
of primaries are fixed up to finitely many coefficients. In one important special case
there is just one tensor structure, and thus one coefficient: scalar-scalar-spin [. For
three scalars we have Polyakov’s formula (z;; = x; — x;):

Chos

- |x12|h123|x13|h132|x23|h231’

<01(fl}1) 02(1’2) 03(1’3)) ]’L”k:Al—I—A] —Ak (17)
with coefficient c123 whose normalization is physically significant once normalization
of fields has been fixed via 2pt functions. For scalar(x;)-scalar(xs)-spin [ (x3) the
formula includes an extra tensor structure factor

1

T(?’) =V, ..V, —traces, V,=——17—/—/—¥——
S I P e

SR (xéth%‘?'_ leLS'I%‘?')’ (18)

of total scaling dimension zero.

There is a nice way to derive these formulas called “embedding formalism”, about
which you can read in my EPFL lectures.

Starting from 4pt functions, such “pure kinematics” no longer fixes the functional
form uniquely. E.g. for 4pt function of four identical scalars we have

(O(1) O(2) O() Oag)) = — 90 (19)

= )
EEEES
where g(u,v) is a function of conformally invariant cross ratios

2 2
_ T12734

= v=U . 20
37%333%4’ Hes ( )

2.3 Operator product expansion (OPE) and crossing

Fortunately, the 4pt function g(u,v) is not independent, but it can be expressed via
the previously introduced “CFT data” A; and Cjj; using the OPE.
OPE is written as

01 x Oy= Z C12; Oy (schematically) (21)
k

or in full form as

O1(x) Os(y) = Crax P (x = y,0,) Ox(y), (22)

where Oy, are all infinitely many “exchanged primaries” with their OPE coefficients
(same as the 3pt function coefficients in (O; O3 Oy), see below), and P (x —y,0,) a
differential operator (an infinite series in derivatives).

The OPE is used inside any n-point function (O;(z) Os(y)...) to reduce it to a
sum of n — 1 point functions (Ox(y) ...) acted upon by P’s. E.g. we have for 3pt
functions:

(O1() Oa(y) 0x(0)) = Chrai P (x =y, 0y) (Or(y) Ok(0)) (23)
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In this case all the OPE terms in the r.h.s. except for the shown one vanish, since the
2pt function (Oy/(y) Ok(2)) vanishes for k' # k. The 3pt function (O1(x) Oz(y) Ok(0))
in the Lh.s. is proportional to the same coefficient Cjo which cancels. Eq. (23)
can thus be used to determine P (x —y,d,), at least in principle. It shows that P
depends only on A’s and p’s of all fields, and on space dimension d.

For concreteness consider the scalar 3pt case. Expanding at small z =z — y, we
have:

1
(O1(y+2) Oa(y) Ox(0)) = 2 [AF BBk [y 1 o |ArH B Bafy |BrtBe— A

1 .. 2
— Lz e (1 + series in 5) (24)

From the leading term, we identify — ” IM as the 2pt function (O(y) O(0)) in (23)

1

and we requlre P= |z|1+—A2_k

(1 +series in z0,) to reproduce the subleading terms.

Notice that the series will have to be divergent on the sphere |z| =|y| because the
3pt function is singular when zy =y + 2 — 0.

There are other ways to determine P. E.g. it can be fixed, in principle, by
demanding correct conformal transformation properties. We won’t need explicit
expression for P (z —y,d,), but see EPFL lectures for an example (the first few
terms), and Dolan and Osborn [15] for full expressions.

Using OPE twice, we can express the 4pt function as (four identical scalars
O = O for concreteness)

(O(21)O(22)O(x5)0 ch (@12, Ouy) P (234, 02,) (Ok(w2) O(4))

1 4
=: Z C’;%Gok(xi) EZ ci (25)
% % Oy
2 3

where G, is a function called conformal block fixed by conformal symmetry in terms
of Oy’s dimension and spin. Conformal blocks transform under conformal symmetry
just as the 4pt function itself and should have the form

goi(u,v)
Go,(z;) = m (26)

in terms of some function gok(u, v) (which is also sometimes called a conformal
block). Computing conformal blocks for various 4pt functions is a big industry, see
[12].

Conformal blocks in (24) are called “s-channel” because we apply OPE to points
12 and 34. S-channel expansion is expected to converge whenever there is a sphere
which separates points 1,2 from points 3,4. We can also consider “t-channel” expan-
sion when one applies OPE to points 23, 14. In overlapping region of convergence
both expansions should agree. Such “crossing constraints” should be satisfied by any
4pt function.



INTRODUCTION TO EUCLIDEAN CFT IN d > 2 7

2.4 Cutting and gluing picture

It’s not our goal here to justify the usual rules of CF'T. To make oneself comfortable,
one may think of CF'T correlators as arising from a path integral, which can be “cut
and glued” along codimension 1 surfaces. We can fix boundary conditions ¢|s=d¢
on a surface S and perform the path integral over all fields inside the surface (with
insertions). The results of this computation, call it Wipside(¢0), is a wavefunctional,
a “state” of fields living on S. We can also do the same computation over outside
fields. When we finally take the product of two wavefunctionals and integrate over
the boundary conditions:

/ D¢0 \I[outside( ¢0) \I[inside( ¢0) (27)

this is an inner product of two states (Woutside; Vinside), and simultaneously the original
correlator.

This discussion suggests that in any QFT we can think of any correlator as an
inner product of two states living on any surface. Clearly there is a lot of freedom
in choosing the surface, in particular for 4pt functions we can choose a surface
separating 12 from 34 or 14 from 23, and this gives rise to a crossing constraint.

In a CFT, it’s natural to use states living on spheres. Dilatation operator maps
a sphere centered at the origin to another such sphere, and it’s natural to choose
a basis of its eigenstates. One can rationalize a lot of CFT lore using such mental
pictures. See [16] for an attempt of rigorous exposition.

An extra comment is needed for OPE convergence. As the above intuitive argu-
ment shows, the space of CF'T states in a sphere is naturally a vector space with a
bilinear inner product. To argue for OPE convergence, we need to turn it to a Hilbert
space (i.e. provide a positive-definite sesquilinear product). Basically, we need to
provide a sesquilinear map * which maps any inside-state ¥ to an outside-state W*
such that their inner product (V*, W) > 0. Such CFTs are called unitary and are an
important subclass of CFTs. In Euclidean signature unitarity is also often called
reflection positivity. Importantly, this condition is preserved under RG flow. E.g.
if a lattice model is reflection positive, CFT describing its phase transition will be
unitary.

Empirically, OPE converges also in some non-unitary CF'Ts, but in that case
there is no robust argument known to me why this should be the case (except for
2d CFTs containing finitely many Virasoro primary fields).

2.5 Evidence for the validity of “bootstrap axioms”

We will call the above CEFT rules (spectrum classification, OPE, crossing) “bootstrap
axioms”. Let’s review evidence that these rules apply to actual theories describing
physical phase transitions. First of all, we can consider any exactly solved 2d CFT
with discrete spectrum, like minimal models. Of course 2d CFTs have a much larger
symmetry (Virasoro) but let us forget about it and use only the global conformal
group SLy(C). Then any Virasoro primary will give rise to infinitely many quasi-
primaries=SLy(C) primaries. Virasoro conformal blocks will decompose as infinite
sums of SLy(C) conformal blocks. So bootstrap axioms are satisfied in these exam-
ples.
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In d > 2, free massless theories (free scalar, free fermion, free Maxwell gauge field
in 4d) satisfy bootstrap axioms, see [15] for some model computations.

Another class of solvable d > 2 examples are gaussian theories based on non-local
action called “Mean Field Theories”. The simplest example is the scalar field with
a non-local action [ d%x¢(9%)*¢p, which gives rise to the 2pt function (¢(z)¢(0)) =
|| 22 with A =d /2 — s. Since the theory is gaussian, all higher-point functions are
computed by Wick’s theorem. Bootstrap axioms are satisfied and OPE coefficients
can be exactly computed (see [17] for recent work).

Bootstrap axioms have been applied for CFTs corresponding to the main 3d
Landau-Ginzburg universality classes (Ising, O(N)). Traditionally these CFTs are
studied using perturbative expansion using the Lagrangian (9¢)*+ \(¢?)? and going
to the IR fixed point. Consider the Ising case for concreteness. The most relevant
fields in the IR are the renormalized versions of ¢ and ¢?. The field ¢*, while relevant
in the UV, has to become irrelevant in IR as the condition of reaching the fixed
point. In the Zs-odd sector, the field ¢? is expected to become a descendant of the
primary ¢ thanks to the equation of motion ¢~ 9?¢. The field ¢° gets a large and
positive anomalous dimension and will become even more irrelevant than ¢* To
summarize, the 3d Ising CFT should contain only two relevant scalar operators, one
Zy-odd coming from ¢, called o, and one Zj-even coming from ¢?, called e. Their
OPEs should have the schematic form:

oxo = 14+Chpe+...

oxe = Cope0+...
exe = 14+Cee+... (28)
where ... corresponds to all other primaries. As we said, other scalars should be

irrelevant. We expect also primaries of spin [ > 0, in particular the stress tensor
operator Ty, of dimension 3. The ¢* theory is unitary, and the 3d Ising CFT to which
it flows should also be unitary. This implies lower bounds on operator dimensions
of primaries called unitarity bounds (basically anomalous dimensions have to be
positive), as well as reality constraints on OPE coefficients. Are there solutions to
crossing satisfying all these constraints?

Very precise approximate solutions to crossing involving hundreds of exchanged
operators have been constructed numerically, for the set of three 4pt functions
(coo0), (ecoo), (ecee) [18]. These studies suggest that bootstrap axioms are con-
sistent. These axioms turn out also very constraining: the set of allowed dimensions
A,, A, and OPE coefficients Cype, Cec forms a tiny island. This gives [18]

(Ag, AL, Cope, Cene) = (0.5181489(10), 1.412625(10), 1.0518537(41), 1.532435(19)).

Outside the island solution does not exist, while within the island it varies very little.
This allows to predict CFT data of about a hundred primary operators of the 3d
Ising CFT [19]. E.g., dimensions of the first irrelevant Zs-even and Zs-odd scalars
are [19]

(Ayr, Au)=(5.2906(11), 3.82968(23)). (29)

Summing the OPE, one can also compute and plot the 4pt functions, see [20] for
(cooo).
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3 Other axiomatic schemes

Bootstrap being an axiomatic approach, it’s interesting to see how it relates to
other formerly proposed QFT axioms, notably Wightman and Osterwalder-Schrader
axioms. Can we derive these axioms from the bootstrap?

3.1 Wightman axioms

Basic textbooks for Wightman axioms are [21],[22].

Let us leave CFT for a while and just discuss relativistic QFT. Generally accepted
minimal properties of such theories are enshrined in Wightman axioms. One pos-
tulates the existence of a Hilbert space H on which the (unit-connected component
of) Poincare group acts with unitary transformations U,, g = (a, A). Translations
are represented by e’ One assumes that the spectrum of P* is in the closed
forward light cone V,,! and that there is the unique invariant state Q (vacuum):
U, 1 =) Local operators ¢(z) are quantum-mechanical operators acting on the

Hilbert space. They transform as
Uy 'o(2)Uy= p(A)p(g~"x) (30)

where p is an irrep of Lorentz. Operators commute at spacelike-separated points
(causality):

[90(‘%‘)7 (P(y)] =0, (l’ - y)2 <0 (31)

(we use the mostly minus metric). In general there will be many local operators,
but here we limit for simplicity to just one ((x) which we assume hermitean: ¢f= (.
One then considers correlation functions of local operators:

Wz, .oy xn) = (Q, (1) p(22)...0(2,) ) (32)

These are called Wightman functions to distinguish them from time-ordered cor-
relators (which won’t be discussed here). By the above, they are Lorentz-invariant
and commute at spacelike separation.

One would like to say something about their regularity, including at coincident
points. An axiom says that Wightman functions should be tempered distributions,?
i.e. the following integrals are finite:

/ 1.y War. o 2) fr(21) o fo(20), (33)

and depend continuously on test functions f; € S (Schwartz class). These can also
be written as

(o)), o(f)= / d () f (). (34)

1. E.g. if the theory has particles of mass m we must have P?=m?2>0.

2. We will abusively use both “Wightman functions” and “Wightman distributions”.



10 SECTION 3

where we defined smeared operators ¢( f). One then requires that an arbitrary string
of smeared operators acting on €) should produce a vector of finite norm. Without
smearing this is false, e.g. the norm of (z)$2 is infinite: (p(2)Q2, p(x)2) = (€,
o()(x)Q) =00. The need to smear is expressed by saying that “p(z) is an operator-
valued distribution.”

A few more important properties of Wightman distributions follow from the
above definitions. Using translations, we can write W, ;1 in the form

Wa(&1, -, &n) = (2, @(0)e T <1p(0)e 4240 (0)Q2) (35)

where & =x9 — 21, {&o =23 — 19 etc. Since P has spectrum in forward light cone, we
conclude that the Fourier transform of W,, (which exists since this is a tempered
distribution) vanishes unless each momentum ¢; is in the forward light cone (spectral
property).

Another property follows from positivity of the norm. Consider a general finite
linear combination of states created by jointly smeared operators:

U= Z o(x1)e(x)...o(xn) ful1, ...y 1) (36)

(the n=0 term is just fo ). Expressing positivity of its norm (¥, ) >0 we get the
positivity property of Wightman distributions:

)= [ W (1 f) 20, (37)

which has to be true for any finite sequence of test functions f,,.3

To summarize, Wightman axioms postulate Hilbert space with unitary represen-
tation of Lorentz group, a spectral conditon for P, and operator-valued distributions
for causal local operators. Then one derives properties of Wightman distributions.
One can also reverse the logic: start from Lorentz invariant causal Wightman func-
tions (distributions) which satisfy the spectral and positivity properties. Wightman
reconstruction theorem says that one can then recover the Hilbert space and other
structures.* We can thus forget about the Hilbert space and just talk about Wightman
distributions.

3.2 Analytic continuation of Wightman functions

Wightman functions allow analytic continuation to complex coordinates z, € C? such
that Im(zy — zx—1) € V.. Indeed consider the Fourier integral representation

wuamfaz/mmhq%w@%@ (38)

3. ()™ means that the order of the arguments must be inverted; in full notation the generic term
reads [da1...d@ntmWa (21, - Tny Tnt 1, s Trgem) fr( @y ooy ©1) fn (@B 1, -5 Trgm)-

4. The proof of this theorem is not hard. One knows that the theory should contain states (36)
associated with any sequence of test functions. So one defines the Hilbert space to consist of states being
sequences of test functions, and one defines the norm by (37). Then one just follows one’s nose.
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If each Im &, € V. then e'2%*is a decreasing exponential in V. Since the support
of W is in V.. we can also stick some bump function equal to 1 inside the lightcone,
which does not change the result. Then the integral looks like applying a distribution
to a test function, thus finite and analytic in Im &, € V.

We can say that Wightman functions W,,, which are distributions, are boundary
values of functions analytic on the set Im(&;) € V. (“forward tube”). This has many
interesting consequences, of which we will explore only some.

We are mostly interested in analytic continuation to the Euclidean space.
Euclidean time 7 is related to the Lorentzian time ¢ by ¢t = —i7.°> Euclidean cor-
relators (Schwinger functions) are going to be functions of an unordered set of
Euclidean coordinates {z¥,...,z5}. We will write it as S, (27, ..., z¥) but keep in
mind that the order of the arguments is unimportant, it’s a function of an unordered
set (unlike Wightman functions for which order of arguments was important unless
points are spacelike separated).

For a given set {x¥,...,22} we define Schwinger function as follows. Pick some
Euclidean time axis and reorder points so that their Euclidean times with respect
to this axis are decreasing: 7 > ... > 7,. Then compute the function by:

Sn((Tl,Xl),...):Wn((—iTl,Xl),...) (39)

Since Im(z; — 2k —1) = (7k—1 — Tk, 0) is in the forward tube, this definition makes sense
and defines a locally analytic function, which is invariant under Euclidean rotations,
which are precisely complex Lorentz transformations preserving the set of points
(—iT,x).

So this is how Schwinger functions are computed, but we still have to convince
ourselves that this definition is consistent. What if we choose another Euclidean time
axis, will different analytic continuations agree? For small changes of the axis which
do not change the Euclidean time order this is guaranteed by rotation invariance.
For big changes of axis, as in Fig. 1, this is also true but a bit harder to see.

-
E
xT1 ,
.
=
//
//
////
— E
o 12

Figure 1. Schwinger functions do not depend on the choice of the Euclidean time axis
used to define them, but this requires an argument, see the text.

For the sake of completeness we will give an argument. This will be a small detour
but it will let us mention a few nice properties of Wightman functions.

It goes without saying that analytic continuations we are discussing remain
Lorentz invariant:

Wa(AE) =W (E) - (40)

5. This is easy to remember: Schrodinger evolution operator e~

e H7 in Euclidean.

should become decaying exponential
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Moreover by analyticity this remains true also for complexified Lorentz transforma-
tions obtained by taking A =exp(ia;L;), where L; are the Lorents generators, and
promoting «; to complex numbers.® The image of the forward tube under complex
Lorentz is called the ‘extended tube’, it’s a strictly large open set.” We can then use
Eq. (40) to extend Wightman functions to the extended tube, and Bargmann-Hall-
Wightman theorem asserts that no ambiguities arise (any two continuation paths
can be continuously deformed one into the other and thus give the same answer).

One interesting obsevation is that although the extended tube contains some
points belonging to the original real Minkowski space R™¢ from where we started our
analytic continuation. These points are called “Jost points” and they correspond to
(some, not all) totally spacelike point configurations. See [22], p.81, for a character-
ization of Jost points. This is interesting because it shows that Wightman functions
are analytic on some portion of Minkowski space corresponding to totally spacelike
configurations.®

Notice furthermore that Wightman functions are symmetric at totally spacelike
configurations because of causality. Thus they are symmetric at Jost points. Denote
by X, point confugurations corresponding to point differences lying in the extended
tube, and X point configurations corresponding to all possible permutations of 3/,.
What the above shows is that Wightman functions can be analytically continued to
»F and are symmetric functions in this domain, invariant under complex Lorentz.

After this long preparation let us explain why the definition of Schwinger func-
tions is consistent. Different choices of 7 axis correspond to a different permutation
of Wightman function arguments, but all permutations are in fact equal as we have
shown. End of proof.

We have used the spectral property of Wightman functions to construct the
Schwinger functions and prove their analyticity. Using positivity condition, we will
now show that Schwinger functions satisfy a property called reflection positivity. As
a simple but rather representative case, consider the 4pt Wightman function which
we will write as

(2, 0(0,x,)e =)0, x Je~ #1271 (0, x e~ (=0, x,) Q) (41)

6. Equivalently complex Lorentz transformations can be defined as complex matrices solving the same
equation ATpA =7 as real Lorentz transformations.

7. Consider 2d example. In lightcone coordinates x* =t + x, Lorentz acts by 27—zt e*, 2~ =z e ?,

X € R, complex Lorentz by the same equations with A € C, forward tube condition is Im z* > 0,1i.e. both
of them in the upperhalfplane. By choosing A =6, T are rotated in the opposite directions, and if  is
large enough they will get out of the upper halfplane.

8. One can also show that W, are analytic at any confugration of points which is totally spacelike (all
pairwise separations spacelike), without using Jost points. For such configurations we can reorder points
at will, e.g. reverse the order:

W21y ooy @) = Wa (T, ooy 1)

If we pass to point differences, then the Lh.s. gives W,,(&y, ..., &) while the r.hs. Wy (=&, ..., —&1).
Both functions can be analytically continued, the first one to Im & € V;, the second to Im (—&) € V. So
W (&1, .., &n) allows analytic continuations to both forward and backward null cone. By the famous edge-
of-the-wedge theorem ([21], Theorem 2-16), W, (1, ..., £&,) then allows analytic continuation to an open
neighborhood, i.e. is analytic at such points.
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where we put all operators to zero time but did not care to shift the spatial coordi-
nates. Continuing to Euclidean we get

(€2, 0(0,x,)e HM=)p(0,x,)e = H =)0, x,)e” 3 ~p(0, x,)Q) (42)
Now let us suppose that the spatial coordinates are pairwise identical x, =x,, X, =
Xy while time coordinates are 71 > 75> 0> 73> 7, are symmetric w.r.t. 7=0:

T3=—Ty, 4= —T1. As we say this point configuration is “reflection symmetric” with
respect to the plane 7=0. Then the correlator becomes

(€2, 0(0,x e HM=™)p(0,x, )~ Ae=Hrp(0, x, ) e M) (0, x,)Q2) = (¥, ¥) >0,

where
U =emp(0,x,)e (0, %) (43)

Thus Schwinger functions are positive in reflection-symmetric configurations. This is
a partial case of “reflection positivity”, the full case formulated as follows. First, we
can integrate it with respect to a symmetric weight function. Second, we can mix
correlators of different order, just as in the positivity condition. Let f,(x1,...,x,) be
a finite sequence of functions in the Euclidean space supported at positive Euclidean
times: 7; > 0. Denote by © the reflection operation: ©: (7,x)+ (—7, %), and acting
on functions by

O fulx1, .oy xp) = fu(Oxy, ..., Ox1), (44)

reflecting arguments and reversing their order. Then we have (reflection positivity):
> [Suen- (@14 fu) 20 (5)

It is possible to show that at coincident points Schwinger functions grow not
faster than a powerlaw. It’s instructive to see how this comes about, and what fixes
the power in the powerlaw. For two points approaching each other, let us choose
Euclidean time axis so that the separation, 7, is along the time direction. Then
the value of Schwinger function is obtained, in momentum space, by evaluating
distribution W on the test function f= e~ 7T which decreases exponentially in the
lightcone and should be extended outside the lightcone to get a Schwartz-class
functions. Now for any distribution A there is a seminorm of a certain finite order N

1l = e 1+ )72 e o o) (46)

la|<

such that it’s bounded by this seminorm: | [ d‘cAf|<C| f| v (N and C depend on

A). Let us apply this to W and to f= e 77 We only need to take the maximum
over the lightcone: f can be extended out of the lightcone without increasing the
seminorm appreciably. It’s easy to see that this maximum grows as 7~V This
proves the above statement in italics.

This constructions allows to send one Euclidean point to another from any direc-
tion along the radius and understand how Schwinger functions behave in this limit.
But it tells nothing what Schwinger functions do exactly at coincident points, how
powerlike singularities are regulated.
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This may remind you the philosophical discussion we had last time, about how
from the lattice point of view asking about coincident-point behavior makes little
sense.

One can try to define Schwinger functions at coincident points, making them
distributions there. This would be a sort of regularization procedure. Whatever it is,
such a definition would be something extra, not recoverable by analytic continuation
from Wightman functions.

3.2.1 Relation to random distributions

(This subsection can be omitted on the first reading.) One approach to Euclidean
QFT is via a theory of random distributions (see e.g. textbook [23]). One imagines
a measure du on the space of distributions ¢ € S’(R%), which allows to compute

averages like
/du(gp)efso(x)f(w)ddw (47)

where f is a test function. Then moments of this measure are Schwinger functions
of the field ¢, which are therefore, in this framework, distributions, including at
coincident points.

It may therefore look that this point of view is more powerful then recovering
Schwinger functions by analytic continuation. This is not quite so. Random distri-
bution point of view usually applies to just one, fundamental, field of the theory.
It’s not a priori clear how other, composite, fields, like (2, fit in this framework.

On the other hand Wightman axioms apply to correlation functions of any local
field in the theory, be that elementary or composite.

3.3 Osterwalder-Schrader theorem

We have seen above how starting with Wightman functions one construct Schwinger
functions via analytic continuation and proves their main property: reflection posi-
tivity.

The famous Osterwalder-Schrader reconstruction theorem, says that one can
go the other way: starting from reflection-positive Schwinger functions recover
Wightman distributions satisfying the spectral and positivity conditions. Published
in 1973 in Communications of Mathematical Physics [24], their first argument was
found to contain an error. An updated formulation of the theorem was published
in the second paper in 1975 [25], and it remains state of the art. To save the
theorem, they introduced an extra technical assumption on Schwinger functions,
called growth condition.” Basically, this condition puts a bound on the growth of
n-point Schwinger-functions as a function of n. The growth is measured via the
integrals: [d%S, f where f is a Schwartz functions of n variables vanishing at
coincident points with all its derivatives (call this class Sx). We can measure the
size of f via seminorms || f ||y defined in (46). Then the growth condition reads:

’/ddenf

9. For reasons unclear to me they called it “linear growth condition”. If anything, it should have been

go—anHCna f65#~ (48)

called “factorial growith condition”.
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where C' > 0 is an integer constant and constants o, should grow not faster than a
power of factorial:

o, <a(n!)?. (49)

Few physicists heard about the need to impose the growth condition. I myself was
shocked to discover this a couple of years ago. The condition is pretty annoying
thing in that it involves all n-point functions at once. Suppose I am interested in the
4pt function. It would be great to have a condition on the Euclidean 4pt function
which will guarantee that it’s going to be well behaved in Lorentzian as well. But
the theorem does not give that. Instead, to get a single correlator in Lorentzian I
have to know something about all n-point functions in Euclidean! I have no idea
how to check this for a general CFT satisfying bootstrap axioms (see section 3.3.2
below for the gaussian case).

3.3.1 Some ideas about the proof

I’d like to give some idea about the proof and why growth condition is important.

The conditions of the theorem talk only about correlation functions, but as a
first step one introduces the Hilbert space. This construction formalizes the sentence
frequently used in physics that “Hilbert space on a plane is generated by all operator
insertions at negative Euclidean times”. What this means mathematically is that
Hilbert space elements are posited as sequences of test functions ( f,,),>0 supported
at negative times, and their inner products are defined by Eq. (45). One starts
with finite sequences, and then completes the space. This allows one to introduce
a time-translation generator (Hamiltonian H) as an operator acting on this Hilbert
space. A simple argument shows that H is a positive operator, so that T. =e"™ is
a contraction semigroup: ||7,| < 1.10

Thus any Schwinger n-point function can be written as
(s e 70, (50)

where we split the points into n; +ns=n and 7 is the time separation between the
two groups of points. Then, by basic Hilbert space technology, we can analytically
continue 7 — 74 1s.

Then one has to deal with two problems. First, we need to know how the result
grows when the Euclidean time separations are sent to zero while imaginary parts are
held fixed. It’s in this limit that Wightman distributions are recovered. Suppose we
are analytically continuing 4pt functions and we would like to know what happens
when the first Euclidean time separation is sent to zero, so we are dealing with

(\111, efH(TJris)\I,g) (51)
OS estimate this by Cauchy-Schwarz, bounding by

(U1, e 10y V2 (W, e H7 D)1/ (52)

10. (W, T0)| < [ T2 = (1] (%, o @)Y/ < 028025 (0, T 0) Y2 W12 as k= 0o
since (¥, Tor,¥) should go to a constant at large k by clustering (a weaker assumption that it may grow
at most polynomially in 2*7 would also suffice).
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which is a Euclidean 2pt function times a Euclidean 6pt function. This is the basic
reason why they need some assumption on 6pt functions, even if one is interested
only in 4pt functions.

Second, we have analytically continued in every time separately, but we need to
analytically continue in all of them jointly. In the above 4pt function example, this
means that state W3 in (51) will need to be analytically continued. But then the
6pt function in the Cauchy-Schwarz bound (52) is at analytically continued values
of coordinates. It needs to be also bounded, which brings in 8pt functions, etc.

This is as much as can be explained given the limited time. The factorial growth
of the coefficients o, is such that all bounds from an infinite sequence of analytic
continuations fit nicely together.

3.3.2 Check of growth condition for gaussian scalar field

For gaussian scalar (of any dimension A, not necessarily d/2 — 1) one can argue as
follows. We have for n test functions on R%:

Sn(f1 X fax -+ X f,) =sum of products of Wick contractions, (53)

each of which is of the form ( f; G f;) where G is the Euclidean Green’s function. We
can in this case dispense with the non-coincident point condition, bound each Wick
contraction by A|| fil|,|| f;||» where r depends on the dimension A, and get a bound
on the Lh.s. of (53) of the form: w, A"[] || fx||» where w,, = (n —1)!! is the number
of terms in the r.h.s. The argument given in the appendix of [25] shows how to pass
from operators smeared separately to operators smeared jointly, and derive (48) (for

all feb9).

4 Towards CFT Osterwalder-Schrader theorem

I will next describe a construction which, for CF'Ts, allows to prove that Lorentzian
4pt correlation functions satisfy Wightman axioms (joint work with Petr Kravchuk
and Jiaxin Qiao). Importantly, we can prove this theorem for 4pt functions, without
ever talking about higher-point functions.

4.1 What do we need to show

Consider Euclidean CFT (n + 1)-pt function S,41(x1, x9, ..., Tp11), of scalars for
simplicity. By translational invariance we have

Sn+1(3717372,---,an):Sn(f1,€2,---,€n), 61:1’2—3}1,62:1’3—1’2 ete. (54)

We have &, = (73, &). We consider time ordering 7, > 0. We need to analytically
continue

Te=¢cr+ity, tpr€R. (55)
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and send € — 0 to recover Lorentzian Wightman functions W,,((t1, &1), ...). The
key step is to prove the following bound on the analytic continuation (we rename
arguments of S, by x,):

1S (21, 29, ..., 2,)| < const. P(ej; b, Xk |, &) (56)

i.e. a bound which grows at most as a polynomial when we send ¢, — 0 or any
coordinate to oo. From this single polynomial bound, we can then conclude:

e The limit ¢;— 0 exists and is a tempered distribution

e More specifically we can write S, as a Fourier-Laplace transform:
ST, ey ) = / dqy...d g, W (qy)eZokmtisanx (57)

where W(qk) is some distribution supported at ¢f > 0. The Wightman func-
tions are inverse Fourier transforms of W (gy)

e In addition, from Euclidean invariance of S,, one easily shows that W(qk),
and in particular its support, must be invariant under Lorentz transforma-
tions. Since it is Lorentz-invariant and contained in ¢f >0, it must in fact be
contained in the forward light cone. Thus we recover the spectral condition.

It’s magic that a polynomial bound implies all of this; we will explain below why.

4.2 2pt and 3pt function examples

But first let us apply this technology to CFT 2pt and 3pt functions. Since they
are given by explicit expressions, analytic continuation is straightforward. For 2pt
functions we have:

1 1 1
S() = E = s T (CF s )

This is nonsingular at Re 7 =¢ >0 and moreover satisfies the uniform bound

1
|52 ()] S 2a (59)
So we conclude without any extra work that the limit as ¢ — 0is a tempered distri-
bution satisfying the spectral condition.!!

Analogously for 3pt functions

1 1
R (@ 2 S (o + e

As this is polynomially bounded, we conclude that the joint limit £, — 0 is a tem-
pered distribution satisfying the spectral condition. For 2pt function, one could
imagine verifying spectral condition by an explicit calculation, but for 3pt function
this looks rather formidable.

S(xy1, x9) = in abs. value) (60)

11. Note that “shifting the contour” argument could only show that it’s a distribution when integrated
w.r.t. analytic test functions.
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4.3 Vladimirov’s theorem

That polynomial boundedness implies Fourier-Laplace representation and existence
of the limit is called Vladimirov’s theorem [26]. I'd like to explain why this magic
theorem is true, in 1d case (generalization to d dimensions being straightforward).
Consider therefore an analytic function S(z + ¢y) defined for 2 >0, y € R and
bounded polynomially in all directions y — o0, x — 0, 00. We can write this as

Sta-+i)l < S+ )P). (61

where P(y) is a polynomial and r > 0. We want to show that
(a) The limit

limS(z+1iy) (62)

z—0

exists as a tempered distribution in y.

(b) S can be written as a Fourier-Laplace transform:

S(a+iy) = / dE g(€)e (= +ve (63)

where ¢(€) is a tempered distribution supported at £ > 0.

1. Clearly (b) would imply (a), but the proof starts with first showing (a). So
we pick a test function and study the integral

/ S(a+iy) f(y)dy=h(z). (64)

We need to show that this has a limit as x — 0. This looks a bit magic, because
estimating naively by absolute value one would conclude that the integral may
blow up. It won’t blow up only because there are some cancelations which are not
captured by the naive estimate. Recall the Sochocki formula:

_ PV% —ind(z) (65)

) 1
lim .
e—0t T +1E

PV represents a kind of cancelations whose existence we need to exhibit in general.

Going back to (64),'2 the first key idea is that we can estimate not just h but any
its derivative. Indeed, by Cauchy-Riemann equations, z-derivatives of h(z) can be
transformed into y derivatives acting on S which then can be integrated by parts to
act on f. Using then the polynomial bound (61) we get an estimate of any derivative
hU)(z) by 1/z" times a seminorm of f of order depending on j and on degree of P
(to make the integral convergent):

BO@ < S f v, N=N(.P) (66)

12. We follow the proof in [21], Theorem 2-10.
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This is still growing as © — 0. Here comes the second key ide: since we have this
bound on any derivative, we can strengthen it recursively using the Newton-Leibnitz
formula:

h(j—1)<x) _ —/1h(j)(3:) + h(j—l)(l) (67)

Every time we use this, we obtain the bound on 2~ with the order of singularity
in z reduced by 1 w.r.t ). Starting this process with j sufficiently large we run it
until we get rid of singularity as x — 0 altogether. We stop the process once we get
a bound on h™M(z) of the form: O(1) times a seminorm of f.!3 Using this bound in

h(z) = —/lh(l)(x) + h(1) (68)

we conclude that the limit of h(x) as x — 0 exists for every f and is a continuous
linear functional of f, i.e. a tempered distribution.
2. We next show (b). First of all notice that for every z >0 we can write

S(z+iy) = / 0 g, (€)1 (69)

where g, € S’ is the Fourier transform of S(z +iy) with respect to y (which exists as a

tempered distribution). Using Cauchy-Riemann equation %j = i% we conclude that

09: _
e gq, (70)

i.e. g.(&)=g(&€)e * where g(&) is some z-independent distribution. Since g and
g are related by an exponential factor, we can so far only claim that g € D’ (i.e.
applicable to compact support test functions). Consider the inverse of (69),

0u(6) = g(E)e = / dy S(z +iy)ei® (71)

and integrate it against a compactly supported test function ¢(§), we get:

/ d€ g(€)e"5p(€) = / dyS(a+iy) $(y) (72)

As ©— 0, the Lh.s. tends to (g, ¢). Using the result proved in part 1, the r.h.s.
tends to [dyS(iy)¢(y) which exists in the sense of tempered distributions and so
is bounded by some Schwartz-space seminorm ||¢||y. We get

(g, )| < const. || @l < const. ||| (73)

where in the second inequality we used that Fourier transform is continuous in
Schwartz space. This inequality, valid for any compactly supported ¢, means that
g extends to a tempered distribution on the whole Schwartz space.

13. An integrable in = bound on A" would also suffice.
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Incidentally, we also proved that lim, ,0S(z +iy) is given by the FT of this
tempered distribution g.

3. It remains to prove that ¢ is supported at £ > 0. Indeed by the above we
have, for any x>0, g(£) =e*g,(£) where g,(&) is the Fourier transform of S(z +iy)
in y. Now let us take the limit z — oco. (This is the only place where we will need
large z.) In this limit " decreases exponentially for any strictly negative ¢, while
92(§) grows at most as a powerlaw because of a polynomial bound on S(z +iy). So

g9(§)=0 for £<0.14

5 The 4pt function

Consider the Euclidean 4pt function, of 4 identical scalars. Preparing to analytically
continuing, we write it as

(o) pla) ¢as) ola)) = e (74)

where g(u,v) is a function of conformally invariant cross ratios

2 2
L1234

U:ﬁ, V=U1s3. (75)
T13T24

If we know g(u,v) we can analytically continue it by setting
xk:(5k+itk,xk) (76)

keeping to the region e, > e3> ¢e9>¢1. We will first get bounds on this analytic con-
tinuation, and then use Vladimirov’s theorem to show that 4pt Wightman functoon
exists, is a tempered distribution, and satisfies spectral property.

It is customary in CFT to pass from u,v to coordinates z, z defined by:

u=zz, v=_(1-2)(1-2). (77)
Solving we find

z,z‘z%(l—i—u—vi\/(1+u—v)2—4u) (78)

The meaning of these coordinates is better understood by fixing 3 points x; — 0,
x4 — 00, x3— (1,0,0,0) and then rotating x5 to lie in 12 plane: xo — (z, y,0,0).
Then: u=2*+y* v=(1—2z)*>+ 3* and so

2,2

r+tiy. (79)

Thus: in Euclidean signature z, zZ are complex and complex-conjugate of each other.

14. If unhappy with this intuitive reasoning, the argument may be made more ‘rigorous’ in its inte-
grated version: show that g vanishes on test functions supported at x < a <0.
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The function g(u,v) can be written as a power-series expansion in z, z:

9(,2)= > pppz" (80)

h,h>0

The first term in this expansion is simply 1, corresponding to the unit operator in
the OPE. The other terms correspond to exchanges of states of scaling dimension
A =h+h and spin s =h — h under rotation in the 12 plane. In a unitary theory,
coefficients pj, ; are positive numbers, being squares of real OPE coefficients.

As a first try, we would like to use this formula to get an analytic continuation
of g. For simplicity, suppose we just analytically continue in

xo— (z,y+1it,0,0) (81)

(we would like the 2nd coordinate to become “time” so that the other three points
remain spacelike separated - simplest case). Now

z,Z=xxi(y+it) »xFt (y—0) (82)

So we see that in this Lorentzian limit z, Z become two independent real numbers.
We can just substitute it into ¢g(z, z) and try to define the analytic continuation by

gat (x7t):g(z7z)|z,2=x$t- (83)

(The analytic continuation of the prefactor in 4pt function is understood). Will
this work? Yes but not everywhere. Indeed we need to show that the resulting
series converges, to claim analyticity. So we need some bound. From positivity of
coefficients pj, ; we have

(22| < gll2] 12D <g(r,7),  r—max (|z],]2]) = max|o ] (84)

The quantity g(r,r) is the 4pt function series in the configuration (0,r, 1, 00), it
will be finite for r <1 and powerlaw bounded as r — 1 by the OPE in the crossed
channel. The bottomline is that this construction achieves analytic continuation of
the 4pt function to the Lorentzian diamond |z £¢| <1, which is only a part of the
full Lorentzian space.

Notice that the function g is analytic in the square. The prefactor 1/(x%5) has
a singularity when 23y = 2%+ (y +it)?>=0 which for y— 0 happens on the lightcones
x = =+t. The resolution of this singularity depends whether the limit is taken from
positive or negative y. These limits correspond to the two orderings in the Lorentzian
Wightman functions

(Q, p(z2) (1) p(23) 0(24)Q)  and (2, p(x1)p(w2) p(23)P(74)$2)

Notice that only the mutual ordering of ¢(x;) and ¢(x3) is important because other
operators are spacelike-separated.
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Figure 2. The described constructions based on the z coordinate allows to analytically
continue the 4pt function in z, coordinate to the shaded “diamond” |z £¢| <1 in the
Lorentzian plane (¢, x). Using the p coordinate we will be able to extend this region to the
larger “wedge” © £t < 1 (on left of the red dashed line)

By taking instead OPE in z5 — x3 channel, we could have constructed analytic
continuation to a diamond centered on x3. None of the two methods allows to control
the Lorentzian point zo = (%, é) which lies on both lightcones of x; and x3. This
“double lightcone singularity” is a mystery; there are few if any general results about
what happens there.

5.1 The p coordinate

In addition to the more familiar z, Z, a smart coordinate to use in d-dimensional
CFT is the p-coordinate [27],[28] related to z, Z by:

1-y1-z 4p (85)

= Or =z
P vz 1+ p)?

and analogously for z, p. Under this map, the plane of complex z € C\[1, +00) is
mapped to the unit disk |p| < 1. There is a conformal transformation which maps
the 4 points (0, z, 1,00) to 4 points (p, —p, 1, —1). The function g in p-coordinates
has an expansion:

9(p,P) =Y @i (86)

h,h>0

where ¢’s are some positive coefficients. Thus p shares many useful properties of z,
while being more powerful.

Let us try to use the p coordinate for the task of analytic continuation to
Lorentzian. We consider the same continuation problem as in (81). We compute
z,z by (82), then p, p, and then g. If |p],|p| <1, then we win big time: con-
tinuation will be analytic. As we just said, this will be true as long as z, Z don’t
touch the cut [1,400) in the process of continuation. This in turn will be true if

max (z F1t) <1, (87)
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which defines a “wedge”, a larger region than the “diamond” |z +¢| < 1. Using the p
coordinate, we extended the region of analyticity, but we still have no access to the
double lightcone singularity and beyond.

But notice this: the whole of the region which we don’t access ends up on the
cuts: zor Zor botharein [1, +00), which means that p or p or both are on the circle
Ipl, |p|=1. We are not analytic there, but we are just on the border of the region of
analyticity (this was not at all obvious when using the z coordinate). This strongly
suggests that 4pt function is a distribution on those regions, and to show this we
just need to establish some powerlaw bounds on the growth when we approach the
boundary of analyticity. In fact since p(z) is an algebraic function it’s essentially a
given that some powerlaw bound will emerge.

Here is a simple proof of powerlaw bound, based on the Schwarz-Pick theorem.
This theorem says that holomorphic maps from upper halfplane H into a unit disk
D to itself satisfy the inequality:!1®

f(z1) = [f(z2) 21— 2
< :H— D). 88
N TEDIEn] Il e B A =
Taking the limit z; — 2o we get an inequality:
! L fiH=D (89)

= fGF S 27 () Tm 2

(we have an equality for f(z) :z—;z which maps H onto D).

Now we apply this to f= p. Differentiating z = ﬁ we find p'(z)= S;Ffp;?)"
Thus by (89)
L COmSt_—(, —ztiy). (90)

<
L—=|pP = [14pPy

The factor 1/(p+1)? blows up only as z— oo where we have p=—1+0(1/4/z) so
we get a polynomial bound

1 const (

< 142373, 91
. |z|*/%) (91)

See section 5.1.1 for two more proofs of this bound. Notice that the 4pt functions
will be bounded by - const.

max |p|, [p[)44 "

The bottomline is that, by this argument, we constructed Wightman functions
in the whole (t,z) plane of xo and proved that they are distributions (including
at the problematic future and past double lightcone discontinuities, and beyond).
Depending which of the two limits y— 0% we take, we get Wightman functions

(€, p(@2) p(z1) p(23)(24)2)  and (2, p(z1)p(x3) p(@2) P(24)C2).
This is progress, but not the full resolution of the problem. Here is a wish list:

e So far we are considering configurations when 3 our of 4 points are mutually
spacelike and fixed.

Z1— 22

f(z1) — f(22) . .| f(z) — f(z2)
TR Tew: for f: D— D or as S IEAEERIen] <

for f: H— H. However for us the version given, for maps from H to D will be most convenient.

15. This theorem is usually stated as

~ 1— 2zizo

Z1— 22

zi — za
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e Even for 3 points spacelike, not all possible operator orderings were con-
structed, e.g. what about (Q, p(x1)p(x2)p(r3)p(x,)Q)?

e So far we are continuing just in one coordinate x5 and just in a very special
kinematical configuration (when all points lie in a 2d plane). What if we vary
all 4 points, and arbitrarily, is it still a distribution?

5.1.1 Powerlaw bound on the approach |p| —1

Here we collect two more proofs of a polynomial bound on
1. Proof by a computation. Write

_1mve

1
L—1pl’

e (=1—z=a+1iy. (92)
1+
Then \/Z
. 1-2Re\/C+[¢|] 1-¢ 2Re\/—
pp* = = , €= (93)
1+2Re\/C+[¢] 1+¢ 1+|C|
So we need to powerlaw-bound ¢ from below (Note that - |P| = 11:':"2 < 1_2|p‘2 =

= —l— 1). A simple computation shows:

Re\/(=+\/R/2, R=y/a*+y*+a. (94)

Considering positive and negative a separately, we can bound R below as

a>0: R>+/a*+y?
y? y?
a<0: R= > 95
Va2+y2—a \Ja?+ 2 (55)

Combining the two bounds, we get:

e~ < const.(1+ /Z+y )( n (a2+y2)1/4> (%)

a2+y)1/4 Y

which is a powerlaw bound of the kind we need to use Vladimirov’s theorem.

2. A more structural argument. Consider the upper halfplane of z =z + iy
and how it and its boundary are mapped under the p map into the unit disk (Fig.
3). The problematic points near which |p|=1 are on the cut [1,00). We divide the
upper halfplane into two regions: a neighborhood of the point z = 0o (white) and
the rest (gray). In the gray region we can treat x, y =O(1) and it’s easy to convince
oneself that one has a bound

1—|p|>const.y. (97)

In particular this is true both over the gray portion of the cut away from the branch
point z =1, but also near this branch point where p has a square-root singularity.
[Hint: cover the boundary by a finite number of neighborhoods with local coordinates
(i, of the form z — z;, or (2 — 2;)*/? near the branch point, so that p(z) = p(2;) + A:(&)
in each neighborhood, where A is an invertible analytic function.|

In the white region we can write p as

BN e A
TR, s R i 1+A(\/E)' (98)
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where A is a one-to-one analytic function. The map z— —1 +% maps the white

region to a straight quadrant formed the blue horizontal and the red dashed vertical
lines, and writing z = re’¥ we have

: [ 2 .2
Re —— > const.—2= ~ const.y/x—w (99)
Ve ri/? (22 +y2)t*

We also have '
7

1—|p|~Re—= 100

|p| ~Re 7 (100)

because A is a smooth invertible function which maps the red dashed line to the red
circle (within the white region). So we have powerlaw bounds everywhere.

Figure 3. The map p(z) from C\[1,c0) to the unit disk. 1 is mapped to 1, co to —1, and
curves to curves of the same color.

5.2 General 2d case

We will next consider the complete 2d case, i.e. all points will be allowed to move
independently but they have to lie in a 2d plane IR? (which upon analytic continua-
tion becomes Lorentzian R!). We will show that the 4pt function is a distribution.
In fact for 4 points x; arbitrarily positioned in the 2d plane and parametrized by the
complex coordinates z;, it’s possible to compute the z and z parameters in closed
form, as

Rl —R223— 24

z= (101)

21—2322—24’

and z analogously. We introduce (; = z; — 2z;41 and rewrite it as
_ G163 _ 1
S SR (Ceae R (e ey ey 1

We then analytically continue

We then have to take the limit y;— 0T for completely arbitrary a;. This will construct
the Wightman function

(9, 0(0,0) (21, t1) (1 4+ T2, t1 +t2) (21 + T2 + X3, t1 + L2+ 13)2), (104)
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in this operator ordering.

—
—
—
——

—_—
—
—
—
—

Figure 4. A proof that z does not cross the cut. Fix some (s € H, one example shown.
Then 1+% and 1 +% lie in the shaded region of the complex plane. To get z real, we
have to pick them complex conjugate (e.g. two dashed vectors). But then their product

is larger than 1, and so z € (0,1). We have shown that z € [1, 00) is impossible.

The key observation is that as (; vary over H, z does not cross the cut [1, 00).
This is best shown graphically, see Fig. 4. So we can compute p(z) and analytically
continue the 4pt function as before. We need to show that as (i, (s, (3 vary over H?,
|p(2(C1, Co, (3))| satisfies a polynomial bound in how fast it can approach 1.

The p is a function from H® to D. We can use the Schwarz-Pick theorem (89)
with respect to any of the three coordinates, keeping the other two fixed. We thus

have an inequality:
1 1
< 105
L=1[p[* = 2|0c,ply1 (105)

and similar ones for (3 3 (but this one will suffice). Furthermore

Oe,p=0:p 0,2 (106)
and using 0,p given above we conclude:
1 const. 1+ 2|32
< < const ————. 107
1o ST pP0e T < ™ Togeln 1o
Now it’s easy to see that both z and J.,z are polynomially bounded:
|GGl (1€
z|= < , 108
e alGT Gl STt wellve oY
C1G3 C2C3 | (a3
Ocz| = = < , 109
9c:2] (Gt )G+ )| [(G+6)* G+ )|~ |yt val*ly2 + vsl (109)

(in fact all O¢z are similarly bounded). End of proof.

5.3 General case

Note added (April 2021). The main goal of this section is to prove inequality
(121). This inequality is correct, but the proof given in this section does not quite
work. The problem is that we have not justified that the series in the r.h.s. of (115)
converges. For this reason in Ref. [ 9] we followed a different route towards showing
a powerlaw bound in d > 2.
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We next have to consider a general configuration of points x; = (7;+it;, x;). One
may suspect that, for 7 > 7 > 73 > 74, the same strategy will work, namely that
we will have |p|, |p| <1. In fact this turns out to be true, but somewhat difficult
to prove directly, since 2z, Z do not have simple expressions in terms of x; beyond
2d. There is one case when z, Z do have explicit expressions: for reflection positive
configurations, which can be suitably generalized to complex times. We will use this
fact, and reduce the general case to the reflection positive one.

Unlike in what we have done so far, it will be important not just to use explicit
formulas for 4pt function, but to recall their OPE origin. We have the OPE:

pla)p(rs) = > Pl y)Or(y) (110)
@] I

where the first sum is over primaries in the OPE, and the second sum is over all
states in the multiplet of @. We can think of the index I as a list of tensor indices,
some coming from QO itself if it was a tensor, others introduced by derivatives.

We are interested in 4pt function (p(z1)p(x2)p(3)p(z4)) where two points have
positive 2° time and two negative: 7, 72> 0> 73, 74. Let us use the OPE for the

first two points with y=N = (1, 6) the “North pole” , while for the second pair with
y=S=(—1,0) the “South pole”. We have

(p(a)p(z)plas)p(en) =) cf (w1, 02 N)eF (w3, 24, 9)GY (111)
o

where we defined the Gram matrix:
G =(O01(N)O,(S)) (112)

In a reflection-positive theory the matrix G/ = G{’(—1)™ is a real, positive-definite
matrix, where N; is the number of 7’s in J.16
Let us define operation @ by z° — —z°. We claim that cf transforms under 6 as:

CF('%.% xg7 ye) = C?(xh x2, y)<_1)NI (113)

This is just a property of rotation-invariant tensors. Indeed ¢; is some tensor built
out of components of 1,2, y and of d,,. When 2° components of vectors flip sign,
the 2° components of ¢f coming from vectors do so as well, and components dy are
unaffected which is consistent with the above rule because (—1)*=1. Scalars like
T - Xy are invariant.l?

Applying the rule (113) in (111), we get:

(p(a1)p(w2) plws) o) =) cf (w1, w2, N)ef (a8, 2§, N)G (114)
o

which now involves the positive-definite matrix G'7.

16. We are assuming that real basis of operators has been chosen.

17. Tt is important for this discussion that O’s which occur in the OPE of two scalars are symmetric
traceless scalars, and thus thd e-tensor does not appear. In presence of the e-tensor there would be an
extra minus sign in the transformation of ¢;.
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We claim that the r.h.s. of (114) converges for all x1, x5 at 7>0 and x3, x4 <0.
This may be surprising because we may not necessarily separate all such pairs of
points with spheres centered at NV,S. So it looks like the most naive condition for
the OPE convergence is not always satisfied. To go around this apparent difficulty,
let us do the conformal map under which N, S are mapped to 0,cc. In this radial
quantization frame the images of x1, x5 will be inside the sphere of radius 1, while
those of 3, x4 outside. So in the radial quantization frame the OPE converges.
When comparing the OPE expansions in both frames, we should keep in mind
that a single derivative 9*O(0) is mapped into a linear combination of derivatives
OPO(N) with | 8| < |a|. However, if we sum over all descendants up to order n, and
then take n— oo, then partial sums of two OPE expansions are the same. In what
follows we will understand the summation in (114) in this sense, which is guaranteed
to converge.

Now let us set x3=13, z4=2f in (114). Then we have:

(o) p(x2)p(@f) p(af)) =D ef (w1, 22, N)eF (21,25, N)G (115)
@]

This has to be positive in an RP theory. Positive-definite matrix G’ satisfies
£65GT > 0 while we have ¢;c;GY. Below we will argue that cr(x1, 2, N) are real
for Euclidean x; x9 in an RP theory. Thus (115) is positive as required.

If we use conformal invariance, all coefficients ¢{ are equal to a single number,
OPE coefficient C,,0, times a real tensor structure. Let us show that C,,0 must be
real in an RP theory. For this consider a state which is a mix of a two-point and a
one-point insertions at 7 > 0:

(Ok(N)|+e{p(z1) ()], (116)

for some index K and € € C. In a reflection positive theory the following expression
has to be real (as well as positive):

(Ox(N)Ox(S)) (= 1)< + e (O (N)p(xf) p(28)) + (1) p(22) (= 1)< Ok (S)) +
ee*(p(w1) (o) p(2]) (9)). (117)

Now consider the limit € — 0 and impose the reality. The order ¢ terms sum up to
(e +¢*)Cupo times the same tensor structure. So Cy,0 must be real.

Up to now we considered only Euclidean, real, configurations of points, but now
we wish to consider analytic continuation x° — 7 + it (keeping spatial coordinates
real). We keep reflection operation 6 as before z° — —2° but as we will see a
particularly nice operation will be %6 under which 7 — —7, t — .

Analytic continuation may be defined by taking the OPE (110) and analytically
continuing: # — 7; +it;. Then we use the analytically continued OPE in (111), which
defines an analytic function of x?, provided that it converges that we need to check.
Of course analytically continued ¢;’s are now complex. Eq. (113) remains true after
analytic continuation, and this (114). Finally since ¢ is real before continuation,
after continuation we have

(w1, 29, N)* =P (27,23, N). (118)
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This allows us to rewrite (114) as

(o) plwa)p(s) () =D of (w1, 0, N)eF (28, i, N)* G (119)
0
Now observe that by setting z3=23?, x, =23’ we get
(p(x1)p(w2) p(@i”)p(5)) = ef (w1, 09, N)eF (w1, 9, N)* G (120)
o

The r.h.s. of this equation remains real and positive even for complex times. We
conclude that the 4pt functions at complex times in *f-symmetric configurations
are real and positive.18 19

Notice also that as a consequence of the last two equations we have Cauchy-
Schwarz inequality for the 4pt function analytically continued to complex times:

|G(ZL‘1, X2, X3, [L‘4)| < G(l’l, X2, xaga xTG)G(xzea "L‘gaa X3, .134). (121)

We are thus reduced to study the 4pt functions at complex times in *6-symmetric
configurations.

To prove a bound on G (21, z, 73, 21%) we find the corresponding z, Z. We expect
that they will be real and in (0, 1), since then 4pt functions will be real and positive.
By constant shifts in ¢ and x, it’s enough to consider the configuration

0

r1= (1 +it,x),x9=(79,0), x3=23" = (—79,0), 4= ¥ = (=71 +it,x) (122)

Then a simple computation gives:

B 3013y (m=m)?+it)* +x7] x c.c _ (1 —72)? =2+ x*2 + 4(11 — 72)t?

x%3x%4_ TN—To—T1+ T TI— To—T1+ T2
= PP A [(n— )+ (- XD =)+ (X)) g
TN —To—>T1+ To [(7’1 +T2)2—|— (t — |X|)2H(7'1 +T2)2—|— (t + |X|)2]
while
_ 133714 _ 473 x 4t} (124)
rizady  [(m472)?+ (= xX)[(7 4 72) + (¢ + [x])?]
From here we realize that u=22,v=(1—z)(1 — 2) is solved by
L (71—72)2+(t—|x|)2’ 2:(71—72)2+(t+|x|)2 (125)
(714 72)2 4 (t — [x])? (T14+72)2+ (+]x])?

18. For completeness let us argue that the expansion in the r.h.s. of (120) converges for complex
times. Denote by S, its partial sums with the cutoff described above, summing over all descendants up to
order n for each primary. We have to appeal to the kinematic fact that these partials sums, for complex
as for real times, can be obtained from the Lh.s. of (120) by taking z, Z expansion and cutting off to
h+h<A+n in each conformal block. The latter expansion consists of positive terms and converges for
complex times, since it’s term by term bounded by the same expansion at real times, whose convergence
is our basic assumption (finiteness of Euclidean 4pt functions).

19. This should not be surprising in view of the familiar QFT relation: (7 +1it)T = o(—7 +it) which
follows from (2°) = e*#*°p(0)e~*#*". The point is that we don’t want to use this relation which assumes
that ¢ and H have been realized as Hermitean operators acting on the same Hilbert space. In CFT we
have OPE which allows us to recover the same property in a different way.
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As promised we have 0 < z, Z < 1, both real.

Polynomial bound follows.
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